1
0
Fork 0

Update Arm dynrec core. Most important change: use ARMv7 instructions. Thanks a lot M-HT

Imported-from: https://svn.code.sf.net/p/dosbox/code-0/dosbox/trunk@3846
This commit is contained in:
Peter Veenstra 2013-11-11 13:25:50 +00:00
parent a5c6f014cc
commit 80df53942c
8 changed files with 1575 additions and 1648 deletions

View file

@ -137,6 +137,7 @@ static struct {
#define X86_64 0x02
#define MIPSEL 0x03
#define ARMV4LE 0x04
#define ARMV7LE 0x05
#define POWERPC 0x04
#if C_TARGETCPU == X86_64
@ -145,7 +146,7 @@ static struct {
#include "core_dynrec/risc_x86.h"
#elif C_TARGETCPU == MIPSEL
#include "core_dynrec/risc_mipsel32.h"
#elif C_TARGETCPU == ARMV4LE
#elif (C_TARGETCPU == ARMV4LE) || (C_TARGETCPU == ARMV7LE)
#include "core_dynrec/risc_armv4le.h"
#elif C_TARGETCPU == POWERPC
#include "core_dynrec/risc_ppc.h"
@ -163,7 +164,7 @@ CacheBlockDynRec * LinkBlocks(BlockReturn ret) {
block=temp_handler->FindCacheBlock(temp_ip & 4095);
if (!block) return NULL;
// found it, link the current block to
// found it, link the current block to
cache.block.running->LinkTo(ret==BR_Link2,block);
return block;
}
@ -219,7 +220,7 @@ Bits CPU_Core_Dynrec_Run(void) {
continue;
}
CPU_CycleLeft+=old_cycles;
return nc_retcode;
return nc_retcode;
}
}
@ -255,7 +256,7 @@ run_block:
case BR_Cycles:
// cycles went negative, return from the core to handle
// external events, schedule the pic...
#if C_HEAVY_DEBUG
#if C_HEAVY_DEBUG
if (DEBUG_HeavyIsBreakpoint()) return debugCallback;
#endif
return CBRET_NONE;

View file

@ -1,5 +1,5 @@
noinst_HEADERS = cache.h decoder.h decoder_basic.h decoder_opcodes.h \
dyn_fpu.h operators.h risc_x64.h risc_x86.h risc_mipsel32.h \
risc_armv4le.h risc_armv4le-common.h \
risc_armv4le-s3.h risc_armv4le-o3.h risc_armv4le-thumb.h \
risc_armv4le-o3.h risc_armv4le-thumb.h \
risc_armv4le-thumb-iw.h risc_armv4le-thumb-niw.h

File diff suppressed because it is too large Load diff

View file

@ -1,918 +0,0 @@
/*
* Copyright (C) 2002-2013 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* ARMv4 (little endian) backend by M-HT (speed-tweaked arm version) */
// temporary registers
#define temp1 HOST_ip
#define temp2 HOST_v3
#define temp3 HOST_v4
// register that holds function return values
#define FC_RETOP HOST_a1
// register used for address calculations,
#define FC_ADDR HOST_v1 // has to be saved across calls, see DRC_PROTECT_ADDR_REG
// register that holds the first parameter
#define FC_OP1 HOST_a1
// register that holds the second parameter
#define FC_OP2 HOST_a2
// special register that holds the third parameter for _R3 calls (byte accessible)
#define FC_OP3 HOST_v2
// register that holds byte-accessible temporary values
#define FC_TMP_BA1 HOST_a1
// register that holds byte-accessible temporary values
#define FC_TMP_BA2 HOST_a2
// temporary register for LEA
#define TEMP_REG_DRC HOST_v2
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// helper macro
#define ROTATE_SCALE(x) ( (x)?(32 - x):(0) )
// instruction encodings
// move
// mov dst, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define MOV_IMM(dst, imm, rimm) (0xe3a00000 + ((dst) << 12) + (imm) + ((rimm) << 7) )
// mov dst, src, lsl #imm
#define MOV_REG_LSL_IMM(dst, src, imm) (0xe1a00000 + ((dst) << 12) + (src) + ((imm) << 7) )
// movs dst, src, lsl #imm
#define MOVS_REG_LSL_IMM(dst, src, imm) (0xe1b00000 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, lsr #imm
#define MOV_REG_LSR_IMM(dst, src, imm) (0xe1a00020 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, asr #imm
#define MOV_REG_ASR_IMM(dst, src, imm) (0xe1a00040 + ((dst) << 12) + (src) + ((imm) << 7) )
// mov dst, src, lsl rreg
#define MOV_REG_LSL_REG(dst, src, rreg) (0xe1a00010 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, lsr rreg
#define MOV_REG_LSR_REG(dst, src, rreg) (0xe1a00030 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, asr rreg
#define MOV_REG_ASR_REG(dst, src, rreg) (0xe1a00050 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mov dst, src, ror rreg
#define MOV_REG_ROR_REG(dst, src, rreg) (0xe1a00070 + ((dst) << 12) + (src) + ((rreg) << 8) )
// mvn dst, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define MVN_IMM(dst, imm, rimm) (0xe3e00000 + ((dst) << 12) + (imm) + ((rimm) << 7) )
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// add dst, src1, src2, lsl #imm
#define ADD_REG_LSL_IMM(dst, src1, src2, imm) (0xe0800000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// sub dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define SUB_IMM(dst, src, imm, rimm) (0xe2400000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// sub dst, src1, src2, lsl #imm
#define SUB_REG_LSL_IMM(dst, src1, src2, imm) (0xe0400000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// rsb dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define RSB_IMM(dst, src, imm, rimm) (0xe2600000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// cmp src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define CMP_IMM(src, imm, rimm) (0xe3500000 + ((src) << 16) + (imm) + ((rimm) << 7) )
// nop
#define NOP MOV_REG_LSL_IMM(HOST_r0, HOST_r0, 0)
// logical
// tst src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define TST_IMM(src, imm, rimm) (0xe3100000 + ((src) << 16) + (imm) + ((rimm) << 7) )
// and dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define AND_IMM(dst, src, imm, rimm) (0xe2000000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// and dst, src1, src2, lsl #imm
#define AND_REG_LSL_IMM(dst, src1, src2, imm) (0xe0000000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// orr dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ORR_IMM(dst, src, imm, rimm) (0xe3800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// orr dst, src1, src2, lsl #imm
#define ORR_REG_LSL_IMM(dst, src1, src2, imm) (0xe1800000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// orr dst, src1, src2, lsr #imm
#define ORR_REG_LSR_IMM(dst, src1, src2, imm) (0xe1800020 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// eor dst, src1, src2, lsl #imm
#define EOR_REG_LSL_IMM(dst, src1, src2, imm) (0xe0200000 + ((dst) << 12) + ((src1) << 16) + (src2) + ((imm) << 7) )
// bic dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define BIC_IMM(dst, src, imm, rimm) (0xe3c00000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// ldrh reg, [addr, #imm] @ 0 <= imm < 256
#define LDRH_IMM(reg, addr, imm) (0xe1d000b0 + ((reg) << 12) + ((addr) << 16) + (((imm) & 0xf0) << 4) + ((imm) & 0x0f) )
// ldrb reg, [addr, #imm] @ 0 <= imm < 4096
#define LDRB_IMM(reg, addr, imm) (0xe5d00000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 4096
#define STR_IMM(reg, addr, imm) (0xe5800000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// strh reg, [addr, #imm] @ 0 <= imm < 256
#define STRH_IMM(reg, addr, imm) (0xe1c000b0 + ((reg) << 12) + ((addr) << 16) + (((imm) & 0xf0) << 4) + ((imm) & 0x0f) )
// strb reg, [addr, #imm] @ 0 <= imm < 4096
#define STRB_IMM(reg, addr, imm) (0xe5c00000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// beq pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BEQ_FWD(imm) (0x0a000000 + ((imm) >> 2) )
// bne pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BNE_FWD(imm) (0x1a000000 + ((imm) >> 2) )
// bgt pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define BGT_FWD(imm) (0xca000000 + ((imm) >> 2) )
// b pc+imm @ 0 <= imm < 32M & imm mod 4 = 0
#define B_FWD(imm) (0xea000000 + ((imm) >> 2) )
// bx reg
#define BX(reg) (0xe12fff10 + (reg) )
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_addd( MOV_REG_LSL_IMM(reg_dst, reg_src, 0) ); // mov reg_dst, reg_src
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
Bits first, scale;
if (imm == 0) {
cache_addd( MOV_IMM(dest_reg, 0, 0) ); // mov dest_reg, #0
} else {
scale = 0;
first = 1;
while (imm) {
while ((imm & 3) == 0) {
imm>>=2;
scale+=2;
}
if (first) {
cache_addd( MOV_IMM(dest_reg, imm & 0xff, ROTATE_SCALE(scale)) ); // mov dest_reg, #((imm & 0xff) << scale)
first = 0;
} else {
cache_addd( ORR_IMM(dest_reg, dest_reg, imm & 0xff, ROTATE_SCALE(scale)) ); // orr dest_reg, dest_reg, #((imm & 0xff) << scale)
}
imm>>=8;
scale+=8;
}
}
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_addd( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
cache_addd( LDRH_IMM(temp2, data_reg, 2) ); // ldrh temp2, [data_reg, #2]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 16) ); // orr dest_reg, dest_reg, temp2, lsl #16
} else {
cache_addd( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addd( LDRH_IMM(temp2, data_reg, 1) ); // ldrh temp2, [data_reg, #1]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 8) ); // orr dest_reg, dest_reg, temp2, lsl #8
cache_addd( LDRB_IMM(temp2, data_reg, 3) ); // ldrb temp2, [data_reg, #3]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 24) ); // orr dest_reg, dest_reg, temp2, lsl #24
}
} else {
cache_addd( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
if ((Bit32u)data & 1) {
cache_addd( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addd( LDRB_IMM(temp2, data_reg, 1) ); // ldrb temp2, [data_reg, #1]
cache_addd( ORR_REG_LSL_IMM(dest_reg, dest_reg, temp2, 8) ); // orr dest_reg, dest_reg, temp2, lsl #8
} else {
cache_addd( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
}
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, temp1);
}
// move a 16bit constant value into dest_reg
// the upper 16bit of the destination register may be destroyed
static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_addd( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 16) ); // mov temp2, src_reg, lsr #16
cache_addd( STRH_IMM(temp2, data_reg, 2) ); // strh temp2, [data_reg, #2]
} else {
cache_addd( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 8) ); // mov temp2, src_reg, lsr #8
cache_addd( STRH_IMM(temp2, data_reg, 1) ); // strh temp2, [data_reg, #1]
cache_addd( MOV_REG_LSR_IMM(temp2, temp2, 16) ); // mov temp2, temp2, lsr #16
cache_addd( STRB_IMM(temp2, data_reg, 3) ); // strb temp2, [data_reg, #3]
}
} else {
cache_addd( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
if ((Bit32u)dest & 1) {
cache_addd( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addd( MOV_REG_LSR_IMM(temp2, src_reg, 8) ); // mov temp2, src_reg, lsr #8
cache_addd( STRB_IMM(temp2, data_reg, 1) ); // strb temp2, [data_reg, #1]
} else {
cache_addd( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, temp1);
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)data);
cache_addd( LDRB_IMM(dest_reg, temp1, 0) ); // ldrb dest_reg, [temp1]
}
// move an 8bit value from memory into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_canuseword(HostReg dest_reg,void* data) {
gen_mov_byte_to_reg_low(dest_reg, data);
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low_imm(HostReg dest_reg,Bit8u imm) {
cache_addd( MOV_IMM(dest_reg, imm, 0) ); // mov dest_reg, #(imm)
}
// move an 8bit constant value into dest_reg
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u imm) {
gen_mov_byte_to_reg_low_imm(dest_reg, imm);
}
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
cache_addd( STRB_IMM(src_reg, temp1, 0) ); // strb src_reg, [temp1]
}
// convert an 8bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_byte(bool sign,HostReg reg) {
if (sign) {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 24) ); // mov reg, reg, lsl #24
cache_addd( MOV_REG_ASR_IMM(reg, reg, 24) ); // mov reg, reg, asr #24
} else {
cache_addd( AND_IMM(reg, reg, 0xff, 0) ); // and reg, reg, #0xff
}
}
// convert a 16bit word to a 32bit dword
// the register is zero-extended (sign==false) or sign-extended (sign==true)
static void gen_extend_word(bool sign,HostReg reg) {
if (sign) {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 16) ); // mov reg, reg, lsl #16
cache_addd( MOV_REG_ASR_IMM(reg, reg, 16) ); // mov reg, reg, asr #16
} else {
cache_addd( MOV_REG_LSL_IMM(reg, reg, 16) ); // mov reg, reg, lsl #16
cache_addd( MOV_REG_LSR_IMM(reg, reg, 16) ); // mov reg, reg, lsr #16
}
}
// add a 32bit value from memory to a full register
static void gen_add(HostReg reg,void* op) {
gen_mov_word_to_reg(temp3, op, 1);
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp3, 0) ); // add reg, reg, temp3
}
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bits scale;
if(!imm) return;
if (imm == 0xffffffff) {
cache_addd( SUB_IMM(reg, reg, 1, 0) ); // sub reg, reg, #1
} else {
scale = 0;
while (imm) {
while ((imm & 3) == 0) {
imm>>=2;
scale+=2;
}
cache_addd( ADD_IMM(reg, reg, imm & 0xff, ROTATE_SCALE(scale)) ); // add reg, reg, #((imm & 0xff) << scale)
imm>>=8;
scale+=8;
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
Bits scale;
Bit32u imm2;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_addd( MOV_IMM(reg, 0, 0) ); // mov reg, #0
} else {
scale = 0;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
cache_addd( BIC_IMM(reg, reg, imm2 & 0xff, ROTATE_SCALE(scale)) ); // bic reg, reg, #((imm2 & 0xff) << scale)
imm2>>=8;
scale+=8;
}
}
}
// move a 32bit constant value into memory
static void gen_mov_direct_dword(void* dest,Bit32u imm) {
gen_mov_dword_to_reg_imm(temp3, imm);
gen_mov_word_from_reg(temp3, dest, 1);
}
// move an address into memory
static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, 1, temp1);
if (imm >= 0) {
cache_addd( ADD_IMM(temp3, temp3, (Bit32s)imm, 0) ); // add temp3, temp3, #(imm)
} else {
cache_addd( SUB_IMM(temp3, temp3, -((Bit32s)imm), 0) ); // sub temp3, temp3, #(-imm)
}
gen_mov_word_from_reg_helper(temp3, dest, 1, temp1);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, dword, temp1);
// maybe use function gen_add_imm
if (dword) {
gen_mov_dword_to_reg_imm(temp2, imm);
} else {
gen_mov_word_to_reg_imm(temp2, (Bit16u)imm);
}
cache_addd( ADD_REG_LSL_IMM(temp3, temp3, temp2, 0) ); // add temp3, temp3, temp2
gen_mov_word_from_reg_helper(temp3, dest, dword, temp1);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, 1, temp1);
if (imm >= 0) {
cache_addd( SUB_IMM(temp3, temp3, (Bit32s)imm, 0) ); // sub temp3, temp3, #(imm)
} else {
cache_addd( ADD_IMM(temp3, temp3, -((Bit32s)imm), 0) ); // add temp3, temp3, #(-imm)
}
gen_mov_word_from_reg_helper(temp3, dest, 1, temp1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
}
gen_mov_dword_to_reg_imm(temp1, (Bit32u)dest);
gen_mov_word_to_reg_helper(temp3, dest, dword, temp1);
// maybe use function gen_add_imm/gen_sub_imm
if (dword) {
gen_mov_dword_to_reg_imm(temp2, imm);
} else {
gen_mov_word_to_reg_imm(temp2, (Bit16u)imm);
}
cache_addd( SUB_REG_LSL_IMM(temp3, temp3, temp2, 0) ); // sub temp3, temp3, temp2
gen_mov_word_from_reg_helper(temp3, dest, dword, temp1);
}
// effective address calculation, destination is dest_reg
// scale_reg is scaled by scale (scale_reg*(2^scale)) and
// added to dest_reg, then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,HostReg scale_reg,Bitu scale,Bits imm) {
cache_addd( ADD_REG_LSL_IMM(dest_reg, dest_reg, scale_reg, scale) ); // add dest_reg, dest_reg, scale_reg, lsl #(scale)
gen_add_imm(dest_reg, imm);
}
// effective address calculation, destination is dest_reg
// dest_reg is scaled by scale (dest_reg*(2^scale)),
// then the immediate value is added
static INLINE void gen_lea(HostReg dest_reg,Bitu scale,Bits imm) {
if (scale) {
cache_addd( MOV_REG_LSL_IMM(dest_reg, dest_reg, scale) ); // mov dest_reg, dest_reg, lsl #(scale)
}
gen_add_imm(dest_reg, imm);
}
// generate a call to a parameterless function
static void INLINE gen_call_function_raw(void * func) {
cache_addd( LDR_IMM(temp1, HOST_pc, 4) ); // ldr temp1, [pc, #4]
cache_addd( ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( BX(temp1) ); // bx temp1
cache_addd((Bit32u)func); // .int func
}
// generate a call to a function with paramcount parameters
// note: the parameters are loaded in the architecture specific way
// using the gen_load_param_ functions below
static Bit32u INLINE gen_call_function_setup(void * func,Bitu paramcount,bool fastcall=false) {
Bit32u proc_addr = (Bit32u)cache.pos;
gen_call_function_raw(func);
return proc_addr;
}
#if (1)
// max of 4 parameters in a1-a4
// load an immediate value as param'th function parameter
static void INLINE gen_load_param_imm(Bitu imm,Bitu param) {
gen_mov_dword_to_reg_imm(param, imm);
}
// load an address as param'th function parameter
static void INLINE gen_load_param_addr(Bitu addr,Bitu param) {
gen_mov_dword_to_reg_imm(param, addr);
}
// load a host-register as param'th function parameter
static void INLINE gen_load_param_reg(Bitu reg,Bitu param) {
gen_mov_regs(param, reg);
}
// load a value from memory as param'th function parameter
static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
gen_mov_word_to_reg(param, (void *)mem, 1);
}
#else
other arm abis
#endif
// jump to an address pointed at by ptr, offset is in imm
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
Bits scale;
Bitu imm2;
gen_mov_word_to_reg(temp3, ptr, 1);
if (imm) {
scale = 0;
imm2 = (Bitu)imm;
while (imm2) {
while ((imm2 & 3) == 0) {
imm2>>=2;
scale+=2;
}
cache_addd( ADD_IMM(temp3, temp3, imm2 & 0xff, ROTATE_SCALE(scale)) ); // add temp3, temp3, #((imm2 & 0xff) << scale)
imm2>>=8;
scale+=8;
}
}
#if (1)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_addd( LDR_IMM(temp1, temp3, 0) ); // ldr temp1, [temp3]
} else
#endif
{
cache_addd( LDRB_IMM(temp1, temp3, 0) ); // ldrb temp1, [temp3]
cache_addd( LDRB_IMM(temp2, temp3, 1) ); // ldrb temp2, [temp3, #1]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 8) ); // orr temp1, temp1, temp2, lsl #8
cache_addd( LDRB_IMM(temp2, temp3, 2) ); // ldrb temp2, [temp3, #2]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 16) ); // orr temp1, temp1, temp2, lsl #16
cache_addd( LDRB_IMM(temp2, temp3, 3) ); // ldrb temp2, [temp3, #3]
cache_addd( ORR_REG_LSL_IMM(temp1, temp1, temp2, 24) ); // orr temp1, temp1, temp2, lsl #24
}
cache_addd( BX(temp1) ); // bx temp1
}
// short conditional jump (+-127 bytes) if register is zero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_zero(HostReg reg,bool dword) {
if (dword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( MOVS_REG_LSL_IMM(temp1, reg, 16) ); // movs temp1, reg, lsl #16
}
cache_addd( BEQ_FWD(0) ); // beq j
return ((Bit32u)cache.pos-4);
}
// short conditional jump (+-127 bytes) if register is nonzero
// the destination is set by gen_fill_branch() later
static Bit32u gen_create_branch_on_nonzero(HostReg reg,bool dword) {
if (dword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( MOVS_REG_LSL_IMM(temp1, reg, 16) ); // movs temp1, reg, lsl #16
}
cache_addd( BNE_FWD(0) ); // bne j
return ((Bit32u)cache.pos-4);
}
// calculate relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch(DRC_PTR_SIZE_IM data) {
#if C_DEBUG
Bits len=(Bit32u)cache.pos-(data+8);
if (len<0) len=-len;
if (len>0x02000000) LOG_MSG("Big jump %d",len);
#endif
*(Bit32u*)data=( (*(Bit32u*)data) & 0xff000000 ) | ( ( ((Bit32u)cache.pos - (data+8)) >> 2 ) & 0x00ffffff );
}
// conditional jump if register is nonzero
// for isdword==true the 32bit of the register are tested
// for isdword==false the lowest 8bit of the register are tested
static Bit32u gen_create_branch_long_nonzero(HostReg reg,bool isdword) {
if (isdword) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
} else {
cache_addd( TST_IMM(reg, 0xff, 0) ); // tst reg, #0xff
}
cache_addd( BEQ_FWD(8) ); // beq nobranch (pc +8)
cache_addd( LDR_IMM(temp1, HOST_pc, 0) ); // ldr temp1, [pc, #0]
cache_addd( BX(temp1) ); // bx temp1
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// compare 32bit-register against zero and jump if value less/equal than zero
static Bit32u gen_create_branch_long_leqzero(HostReg reg) {
cache_addd( CMP_IMM(reg, 0, 0) ); // cmp reg, #0
cache_addd( BGT_FWD(8) ); // bgt nobranch (pc+8)
cache_addd( LDR_IMM(temp1, HOST_pc, 0) ); // ldr temp1, [pc, #0]
cache_addd( BX(temp1) ); // bx temp1
cache_addd(0); // fill j
// nobranch:
return ((Bit32u)cache.pos-4);
}
// calculate long relative offset and fill it into the location pointed to by data
static void INLINE gen_fill_branch_long(Bit32u data) {
// this is an absolute branch
*(Bit32u*)data=(Bit32u)cache.pos;
}
static void gen_run_code(void) {
cache_addd(0xe92d4000); // stmfd sp!, {lr}
cache_addd(0xe92d0cf0); // stmfd sp!, {v1-v4,v7,v8}
// adr: 8
cache_addd( LDR_IMM(FC_SEGS_ADDR, HOST_pc, 64 - (8 + 8)) ); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
// adr: 12
cache_addd( LDR_IMM(FC_REGS_ADDR, HOST_pc, 68 - (12 + 8)) ); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd( ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd(0xe92d4000); // stmfd sp!, {lr}
cache_addd( BX(HOST_r0) ); // bx r0
cache_addd(0xe8bd0cf0); // ldmfd sp!, {v1-v4,v7,v8}
cache_addd(0xe8bd4000); // ldmfd sp!, {lr}
cache_addd( BX(HOST_lr) ); // bx lr
// fill up to 64 bytes
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
cache_addd( NOP ); // nop
// adr: 64
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
}
// return from a function
static void gen_return_function(void) {
cache_addd(0xe8bd4000); // ldmfd sp!, {lr}
cache_addd( BX(HOST_lr) ); // bx lr
}
#ifdef DRC_FLAGS_INVALIDATION
// called when a call to a function can be replaced by a
// call to a simpler function
static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
#ifdef DRC_FLAGS_INVALIDATION_DCODE
// try to avoid function calls but rather directly fill in code
switch (flags_type) {
case t_ADDb:
case t_ADDw:
case t_ADDd:
*(Bit32u*)pos=ADD_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // add FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ORb:
case t_ORw:
case t_ORd:
*(Bit32u*)pos=ORR_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // orr FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ANDb:
case t_ANDw:
case t_ANDd:
*(Bit32u*)pos=AND_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // and FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SUBb:
case t_SUBw:
case t_SUBd:
*(Bit32u*)pos=SUB_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // sub FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_XORb:
case t_XORw:
case t_XORd:
*(Bit32u*)pos=EOR_REG_LSL_IMM(FC_RETOP, HOST_a1, HOST_a2, 0); // eor FC_RETOP, a1, a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_CMPb:
case t_CMPw:
case t_CMPd:
case t_TESTb:
case t_TESTw:
case t_TESTd:
*(Bit32u*)pos=B_FWD(8); // b (pc+2*4)
break;
case t_INCb:
case t_INCw:
case t_INCd:
*(Bit32u*)pos=ADD_IMM(FC_RETOP, HOST_a1, 1, 0); // add FC_RETOP, a1, #1
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_DECb:
case t_DECw:
case t_DECd:
*(Bit32u*)pos=SUB_IMM(FC_RETOP, HOST_a1, 1, 0); // sub FC_RETOP, a1, #1
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHLb:
case t_SHLw:
case t_SHLd:
*(Bit32u*)pos=MOV_REG_LSL_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, lsl a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRb:
*(Bit32u*)pos=AND_IMM(FC_RETOP, HOST_a1, 0xff, 0); // and FC_RETOP, a1, #0xff
*(Bit32u*)(pos+4)=MOV_REG_LSR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, lsr a2
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=MOV_REG_LSR_IMM(FC_RETOP, FC_RETOP, 16); // mov FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+8)=MOV_REG_LSR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, lsr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SHRd:
*(Bit32u*)pos=MOV_REG_LSR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, lsr a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARb:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 24); // mov FC_RETOP, a1, lsl #24
*(Bit32u*)(pos+4)=MOV_REG_ASR_IMM(FC_RETOP, FC_RETOP, 24); // mov FC_RETOP, FC_RETOP, asr #24
*(Bit32u*)(pos+8)=MOV_REG_ASR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, asr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=MOV_REG_ASR_IMM(FC_RETOP, FC_RETOP, 16); // mov FC_RETOP, FC_RETOP, asr #16
*(Bit32u*)(pos+8)=MOV_REG_ASR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, asr a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_SARd:
*(Bit32u*)pos=MOV_REG_ASR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, asr a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_RORb:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 24); // mov FC_RETOP, a1, lsl #24
*(Bit32u*)(pos+4)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 8); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #8
*(Bit32u*)(pos+8)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+12)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
break;
case t_RORw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+8)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_RORd:
*(Bit32u*)pos=MOV_REG_ROR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, ror a2
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_ROLw:
*(Bit32u*)pos=MOV_REG_LSL_IMM(FC_RETOP, HOST_a1, 16); // mov FC_RETOP, a1, lsl #16
*(Bit32u*)(pos+4)=RSB_IMM(HOST_a2, HOST_a2, 32, 0); // rsb a2, a2, #32
*(Bit32u*)(pos+8)=ORR_REG_LSR_IMM(FC_RETOP, FC_RETOP, FC_RETOP, 16); // orr FC_RETOP, FC_RETOP, FC_RETOP, lsr #16
*(Bit32u*)(pos+12)=MOV_REG_ROR_REG(FC_RETOP, FC_RETOP, HOST_a2); // mov FC_RETOP, FC_RETOP, ror a2
break;
case t_ROLd:
*(Bit32u*)pos=RSB_IMM(HOST_a2, HOST_a2, 32, 0); // rsb a2, a2, #32
*(Bit32u*)(pos+4)=MOV_REG_ROR_REG(FC_RETOP, HOST_a1, HOST_a2); // mov FC_RETOP, a1, ror a2
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
case t_NEGb:
case t_NEGw:
case t_NEGd:
*(Bit32u*)pos=RSB_IMM(FC_RETOP, HOST_a1, 0, 0); // rsb FC_RETOP, a1, #0
*(Bit32u*)(pos+4)=NOP; // nop
*(Bit32u*)(pos+8)=NOP; // nop
*(Bit32u*)(pos+12)=NOP; // nop
break;
default:
*(Bit32u*)(pos+12)=(Bit32u)fct_ptr; // simple_func
break;
}
#else
*(Bit32u*)(pos+12)=(Bit32u)fct_ptr; // simple_func
#endif
}
#endif
static void cache_block_before_close(void) { }
#ifdef DRC_USE_SEGS_ADDR
// mov 16bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_seg16_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDRH_IMM(dest_reg, FC_SEGS_ADDR, index) ); // ldrh dest_reg, [FC_SEGS_ADDR, #index]
}
// mov 32bit value from Segs[index] into dest_reg using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_mov_seg32_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDR_IMM(dest_reg, FC_SEGS_ADDR, index) ); // ldr dest_reg, [FC_SEGS_ADDR, #index]
}
// add a 32bit value from Segs[index] to a full register using FC_SEGS_ADDR (index modulo 4 must be zero)
static void gen_add_seg32_to_reg(HostReg reg,Bitu index) {
cache_addd( LDR_IMM(temp1, FC_SEGS_ADDR, index) ); // ldr temp1, [FC_SEGS_ADDR, #index]
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp1, 0) ); // add reg, reg, temp1
}
#endif
#ifdef DRC_USE_REGS_ADDR
// mov 16bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regval16_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDRH_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrh dest_reg, [FC_REGS_ADDR, #index]
}
// mov 32bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_to_reg(HostReg dest_reg,Bitu index) {
cache_addd( LDR_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldr dest_reg, [FC_REGS_ADDR, #index]
}
// move a 32bit (dword==true) or 16bit (dword==false) value from cpu_regs[index] into dest_reg using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_regword_to_reg(HostReg dest_reg,Bitu index,bool dword) {
if (dword) {
cache_addd( LDR_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldr dest_reg, [FC_REGS_ADDR, #index]
} else {
cache_addd( LDRH_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrh dest_reg, [FC_REGS_ADDR, #index]
}
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_regbyte_to_reg_low(HostReg dest_reg,Bitu index) {
cache_addd( LDRB_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrb dest_reg, [FC_REGS_ADDR, #index]
}
// move an 8bit value from cpu_regs[index] into dest_reg using FC_REGS_ADDR
// the upper 24bit of the destination register can be destroyed
// this function can use FC_OP1/FC_OP2 as dest_reg which are
// not directly byte-accessible on some architectures
static void INLINE gen_mov_regbyte_to_reg_low_canuseword(HostReg dest_reg,Bitu index) {
cache_addd( LDRB_IMM(dest_reg, FC_REGS_ADDR, index) ); // ldrb dest_reg, [FC_REGS_ADDR, #index]
}
// add a 32bit value from cpu_regs[index] to a full register using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_add_regval32_to_reg(HostReg reg,Bitu index) {
cache_addd( LDR_IMM(temp2, FC_REGS_ADDR, index) ); // ldr temp2, [FC_REGS_ADDR, #index]
cache_addd( ADD_REG_LSL_IMM(reg, reg, temp2, 0) ); // add reg, reg, temp2
}
// move 16bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 2 must be zero)
static void gen_mov_regval16_from_reg(HostReg src_reg,Bitu index) {
cache_addd( STRH_IMM(src_reg, FC_REGS_ADDR, index) ); // strh src_reg, [FC_REGS_ADDR, #index]
}
// move 32bit of register into cpu_regs[index] using FC_REGS_ADDR (index modulo 4 must be zero)
static void gen_mov_regval32_from_reg(HostReg src_reg,Bitu index) {
cache_addd( STR_IMM(src_reg, FC_REGS_ADDR, index) ); // str src_reg, [FC_REGS_ADDR, #index]
}
// move 32bit (dword==true) or 16bit (dword==false) of a register into cpu_regs[index] using FC_REGS_ADDR (if dword==true index modulo 4 must be zero) (if dword==false index modulo 2 must be zero)
static void gen_mov_regword_from_reg(HostReg src_reg,Bitu index,bool dword) {
if (dword) {
cache_addd( STR_IMM(src_reg, FC_REGS_ADDR, index) ); // str src_reg, [FC_REGS_ADDR, #index]
} else {
cache_addd( STRH_IMM(src_reg, FC_REGS_ADDR, index) ); // strh src_reg, [FC_REGS_ADDR, #index]
}
}
// move the lowest 8bit of a register into cpu_regs[index] using FC_REGS_ADDR
static void gen_mov_regbyte_from_reg_low(HostReg src_reg,Bitu index) {
cache_addd( STRB_IMM(src_reg, FC_REGS_ADDR, index) ); // strb src_reg, [FC_REGS_ADDR, #index]
}
#endif

View file

@ -50,15 +50,14 @@
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// used to hold the address of "core_dynrec.readdata" - filled in function gen_run_code
#define readdata_addr HOST_v5
// instruction encodings
@ -98,10 +97,14 @@
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// bic dst, src
#define BIC(dst, src) (0x4380 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// mvn dst, src
#define MVN(dst, src) (0x43c0 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
@ -128,6 +131,8 @@
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// ldr reg, [addr1, addr2]
#define LDR_REG(reg, addr1, addr2) (0x5800 + (reg) + ((addr1) << 3) + ((addr2) << 6) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
@ -150,6 +155,25 @@
#define BX(reg) (0x4700 + ((reg) << 3) )
// arm instructions
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ARM_ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define ARM_LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #-(imm)]! @ 0 <= imm < 4096
#define ARM_STR_IMM_M_W(reg, addr, imm) (0xe5200000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// bx reg
#define ARM_BX(reg) (0xe12fff10 + (reg) )
// data pool defines
#define CACHE_DATA_JUMP (2)
#define CACHE_DATA_ALIGN (32)
@ -193,7 +217,7 @@ static void cache_checkinstr(Bit32u size) {
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
@ -275,30 +299,49 @@ static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// helper function
static bool val_single_shift(Bit32u value, Bit32u *val_shift) {
Bit32u shift;
if (GCC_UNLIKELY(value == 0)) {
*val_shift = 0;
return true;
}
shift = 0;
while ((value & 1) == 0) {
value>>=1;
shift+=1;
}
if ((value >> 8) != 0) return false;
*val_shift = shift;
return true;
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
if ((imm & 0xffffff00) == 0) {
Bit32u scale;
if (imm < 256) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((imm & 0xffff00ff) == 0) {
} else if ((~imm) < 256) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8)
cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8
} else if ((imm & 0xff00ffff) == 0) {
cache_addw( MOV_IMM(dest_reg, ~imm) ); // mov dest_reg, #(~imm)
cache_addw( MVN(dest_reg, dest_reg) ); // mvn dest_reg, dest_reg
} else if (val_single_shift(imm, &scale)) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16)
cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16
} else if ((imm & 0x00ffffff) == 0) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24)
cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24
cache_addw( MOV_IMM(dest_reg, imm >> scale) ); // mov dest_reg, #(imm >> scale)
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #scale
} else {
Bit32u diff;
cache_checkinstr(4);
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff >> 2) ); // add dest_reg, pc, #(diff >> 2)
@ -321,10 +364,61 @@ static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
}
}
// helper function
static bool gen_mov_memval_to_reg_helper(HostReg dest_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDR_IMM(dest_reg, templo2, data - addr_data) ); // ldr dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRH_IMM(dest_reg, templo2, data - addr_data) ); // ldrh dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRB_IMM(dest_reg, templo2, data - addr_data) ); // ldrb dest_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_to_reg(HostReg dest_reg, void *data, Bitu size) {
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_checkinstr(8);
@ -343,18 +437,23 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 1) {
cache_checkinstr(8);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
@ -364,8 +463,10 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
if (!gen_mov_memval_to_reg(dest_reg, data, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
}
// move a 16bit constant value into dest_reg
@ -374,10 +475,61 @@ static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function
static bool gen_mov_memval_from_reg_helper(HostReg src_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STR_IMM(src_reg, templo2, data - addr_data) ); // str src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRH_IMM(src_reg, templo2, data - addr_data) ); // strh src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRB_IMM(src_reg, templo2, data - addr_data) ); // strb src_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_from_reg(HostReg src_reg, void *dest, Bitu size) {
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_checkinstr(8);
@ -398,18 +550,23 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 1) {
cache_checkinstr(8);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
@ -418,8 +575,10 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
if (!gen_mov_memval_from_reg(src_reg, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
}
// move an 8bit value from memory into dest_reg
@ -427,9 +586,11 @@ static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
if (!gen_mov_memval_to_reg(dest_reg, data, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
}
// move an 8bit value from memory into dest_reg
@ -459,9 +620,11 @@ static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
if (!gen_mov_memval_from_reg(src_reg, dest, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
}
@ -501,18 +664,58 @@ static void gen_add(HostReg reg,void* op) {
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bit32u imm2, scale;
if(!imm) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(reg, imm) ); // add reg, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(reg, imm2) ); // sub reg, #(-imm)
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( SUB_REG(reg, reg, templo1) ); // sub reg, reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
if(imm == 0xffffffff) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
Bit32u imm2, scale;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_checkinstr(2);
cache_addw( MOV_IMM(reg, 0) ); // mov reg, #0
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( BIC(reg, templo1) ); // bic reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
}
}
@ -527,70 +730,69 @@ static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( ADD_IMM8(templo3, (Bit32s)imm) ); // add templo3, #(imm)
} else {
cache_addw( SUB_IMM8(templo3, -((Bit32s)imm)) ); // sub templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
gen_add_imm(templo3, imm);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( SUB_IMM8(templo3, (Bit32s)imm) ); // sub templo3, #(imm)
} else {
cache_addw( ADD_IMM8(templo3, -((Bit32s)imm)) ); // add templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
gen_add_direct_word(dest, (Bit32s)imm, 1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
Bit32u imm2, scale;
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(templo3, imm) ); // sub templo3, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(templo3, imm2) ); // add templo3, #(-imm)
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
}
}
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
gen_sub_direct_word(dest, (Bit32s)imm, 1);
}
// effective address calculation, destination is dest_reg
@ -694,20 +896,22 @@ static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
if (imm) {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo2) ); // add templo3, templo3, templo2
}
#if (1)
// (*ptr) should be word aligned
#if !defined(C_UNALIGNED_MEMORY)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, 0) ); // ldr templo2, [templo3]
} else
#endif
{
if ((imm >= 0) && (imm < 128) && ((imm & 3) == 0)) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, imm) ); // ldr templo2, [templo3, #imm]
} else {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(6);
cache_addw( LDR_REG(templo2, templo3, templo2) ); // ldr templo2, [templo3, templo2]
}
#if !defined(C_UNALIGNED_MEMORY)
} else {
gen_add_imm(templo3, imm);
cache_checkinstr(24);
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
@ -720,6 +924,7 @@ static void gen_jmp_ptr(void * ptr,Bits imm=0) {
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
#endif
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
@ -815,50 +1020,53 @@ static void INLINE gen_fill_branch_long(Bit32u data) {
}
static void gen_run_code(void) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1
cache_addd(0xe12fff10 + (HOST_r3)); // bx r3
Bit8u *pos1, *pos2, *pos3;
// thumb state from now on
cache_addw(0xb500); // push {lr}
cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR
cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR
cache_addw(0xb4fc); // push {r2,r3,v1-v4}
#if (__ARM_EABI__)
// 8-byte stack alignment
cache_addd(0xe92d4ff0); // stmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe92d4df0); // stmfd sp!, {v1-v5,v7,v8,lr}
#endif
// adr: 16
cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)]
// adr: 18
cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)]
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_r0, HOST_r0, 1, 0) ); // add r0, r0, #1
// align 4
cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8
cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1
cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1
cache_addw(0xb408); // push {r3}
cache_addw( BX(HOST_r0) ); // bx r0
cache_addw( NOP ); // nop
pos1 = cache.pos;
cache_addd( 0 );
pos2 = cache.pos;
cache_addd( 0 );
pos3 = cache.pos;
cache_addd( 0 );
// align 4
cache_addw(0xbcfc); // pop {r2,r3,v1-v4}
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( ARM_STR_IMM_M_W(HOST_lr, HOST_sp, 4) ); // str lr, [sp, #-4]!
cache_addd( ARM_BX(HOST_r0) ); // bx r0
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
#if (__ARM_EABI__)
cache_addd(0xe8bd4ff0); // ldmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe8bd4df0); // ldmfd sp!, {v1-v5,v7,v8,lr}
#endif
cache_addd( ARM_BX(HOST_lr) ); // bx lr
// fill up to 64 bytes
cache_addw( NOP ); // nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
// adr: 64
*(Bit32u*)pos1 = ARM_LDR_IMM(FC_SEGS_ADDR, HOST_pc, cache.pos - (pos1 + 8)); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
*(Bit32u*)pos2 = ARM_LDR_IMM(FC_REGS_ADDR, HOST_pc, cache.pos - (pos2 + 8)); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
*(Bit32u*)pos3 = ARM_LDR_IMM(readdata_addr, HOST_pc, cache.pos - (pos3 + 8)); // ldr readdata_addr, [pc, #(&core_dynrec.readdata)]
cache_addd((Bit32u)&core_dynrec.readdata); // address of "core_dynrec.readdata"
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
}
// return from a function

View file

@ -50,15 +50,14 @@
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// used to hold the address of "core_dynrec.readdata" - filled in function gen_run_code
#define readdata_addr HOST_v5
// instruction encodings
@ -98,10 +97,14 @@
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// bic dst, src
#define BIC(dst, src) (0x4380 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// mvn dst, src
#define MVN(dst, src) (0x43c0 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
@ -128,6 +131,8 @@
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// ldr reg, [addr1, addr2]
#define LDR_REG(reg, addr1, addr2) (0x5800 + (reg) + ((addr1) << 3) + ((addr2) << 6) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
@ -150,6 +155,25 @@
#define BX(reg) (0x4700 + ((reg) << 3) )
// arm instructions
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ARM_ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define ARM_LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #-(imm)]! @ 0 <= imm < 4096
#define ARM_STR_IMM_M_W(reg, addr, imm) (0xe5200000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// bx reg
#define ARM_BX(reg) (0xe12fff10 + (reg) )
// data pool defines
#define CACHE_DATA_JUMP (2)
#define CACHE_DATA_ALIGN (32)
@ -193,7 +217,7 @@ static void cache_checkinstr(Bit32u size) {
cache_datapos = (Bit8u *) (((Bitu)cache.block.active->cache.start + cache.block.active->cache.size - CACHE_DATA_ALIGN) & ~(CACHE_DATA_ALIGN - 1));
} else {
register Bit32u cachemodsize;
cachemodsize = (cache.pos - cache.block.active->cache.start) & (CACHE_MAXSIZE - 1);
if (cachemodsize + CACHE_DATA_MAX + CACHE_DATA_ALIGN <= CACHE_MAXSIZE ||
@ -275,30 +299,49 @@ static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// helper function
static bool val_single_shift(Bit32u value, Bit32u *val_shift) {
Bit32u shift;
if (GCC_UNLIKELY(value == 0)) {
*val_shift = 0;
return true;
}
shift = 0;
while ((value & 1) == 0) {
value>>=1;
shift+=1;
}
if ((value >> 8) != 0) return false;
*val_shift = shift;
return true;
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
if ((imm & 0xffffff00) == 0) {
Bit32u scale;
if (imm < 256) {
cache_checkinstr(2);
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((imm & 0xffff00ff) == 0) {
} else if ((~imm) < 256) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8)
cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8
} else if ((imm & 0xff00ffff) == 0) {
cache_addw( MOV_IMM(dest_reg, ~imm) ); // mov dest_reg, #(~imm)
cache_addw( MVN(dest_reg, dest_reg) ); // mvn dest_reg, dest_reg
} else if (val_single_shift(imm, &scale)) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16)
cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16
} else if ((imm & 0x00ffffff) == 0) {
cache_checkinstr(4);
cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24)
cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24
cache_addw( MOV_IMM(dest_reg, imm >> scale) ); // mov dest_reg, #(imm >> scale)
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #scale
} else {
Bit32u diff;
cache_checkinstr(4);
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff >> 2) ); // add dest_reg, pc, #(diff >> 2)
@ -321,10 +364,61 @@ static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
}
}
// helper function
static bool gen_mov_memval_to_reg_helper(HostReg dest_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDR_IMM(dest_reg, templo2, data - addr_data) ); // ldr dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRH_IMM(dest_reg, templo2, data - addr_data) ); // ldrh dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRB_IMM(dest_reg, templo2, data - addr_data) ); // ldrb dest_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_to_reg(HostReg dest_reg, void *data, Bitu size) {
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_checkinstr(8);
@ -343,18 +437,23 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 1) {
cache_checkinstr(8);
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
@ -364,8 +463,10 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
if (!gen_mov_memval_to_reg(dest_reg, data, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
}
// move a 16bit constant value into dest_reg
@ -374,10 +475,61 @@ static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function
static bool gen_mov_memval_from_reg_helper(HostReg src_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STR_IMM(src_reg, templo2, data - addr_data) ); // str src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRH_IMM(src_reg, templo2, data - addr_data) ); // strh src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_checkinstr(4);
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRB_IMM(src_reg, templo2, data - addr_data) ); // strb src_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_from_reg(HostReg src_reg, void *dest, Bitu size) {
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_checkinstr(8);
@ -398,18 +550,23 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 1) {
cache_checkinstr(8);
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else {
} else
#endif
{
cache_checkinstr(2);
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
@ -418,8 +575,10 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
if (!gen_mov_memval_from_reg(src_reg, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
}
// move an 8bit value from memory into dest_reg
@ -427,9 +586,11 @@ static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
if (!gen_mov_memval_to_reg(dest_reg, data, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_checkinstr(2);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
}
// move an 8bit value from memory into dest_reg
@ -459,9 +620,11 @@ static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
if (!gen_mov_memval_from_reg(src_reg, dest, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_checkinstr(2);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
}
@ -501,18 +664,58 @@ static void gen_add(HostReg reg,void* op) {
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bit32u imm2, scale;
if(!imm) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(reg, imm) ); // add reg, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(reg, imm2) ); // sub reg, #(-imm)
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( SUB_REG(reg, reg, templo1) ); // sub reg, reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
if(imm == 0xffffffff) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
Bit32u imm2, scale;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_checkinstr(2);
cache_addw( MOV_IMM(reg, 0) ); // mov reg, #0
} else {
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( BIC(reg, templo1) ); // bic reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
}
}
@ -527,70 +730,69 @@ static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( ADD_IMM8(templo3, (Bit32s)imm) ); // add templo3, #(imm)
} else {
cache_addw( SUB_IMM8(templo3, -((Bit32s)imm)) ); // sub templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
gen_add_imm(templo3, imm);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
cache_checkinstr(2);
if (imm >= 0) {
cache_addw( SUB_IMM8(templo3, (Bit32s)imm) ); // sub templo3, #(imm)
} else {
cache_addw( ADD_IMM8(templo3, -((Bit32s)imm)) ); // add templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
gen_add_direct_word(dest, (Bit32s)imm, 1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
Bit32u imm2, scale;
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_checkinstr(2);
cache_addw( SUB_IMM8(templo3, imm) ); // sub templo3, #imm
} else if (imm2 <= 255) {
cache_checkinstr(2);
cache_addw( ADD_IMM8(templo3, imm2) ); // add templo3, #(-imm)
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
if (val_single_shift(imm2, &scale)) {
cache_checkinstr((scale)?6:4);
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
}
}
cache_checkinstr(2);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
gen_sub_direct_word(dest, (Bit32s)imm, 1);
}
// effective address calculation, destination is dest_reg
@ -696,20 +898,22 @@ static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
if (imm) {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(2);
cache_addw( ADD_REG(templo3, templo3, templo2) ); // add templo3, templo3, templo2
}
#if (1)
// (*ptr) should be word aligned
#if !defined(C_UNALIGNED_MEMORY)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, 0) ); // ldr templo2, [templo3]
} else
#endif
{
if ((imm >= 0) && (imm < 128) && ((imm & 3) == 0)) {
cache_checkinstr(6);
cache_addw( LDR_IMM(templo2, templo3, imm) ); // ldr templo2, [templo3, #imm]
} else {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_checkinstr(6);
cache_addw( LDR_REG(templo2, templo3, templo2) ); // ldr templo2, [templo3, templo2]
}
#if !defined(C_UNALIGNED_MEMORY)
} else {
gen_add_imm(templo3, imm);
cache_checkinstr(24);
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
@ -722,6 +926,7 @@ static void gen_jmp_ptr(void * ptr,Bits imm=0) {
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
#endif
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
@ -817,50 +1022,53 @@ static void INLINE gen_fill_branch_long(Bit32u data) {
}
static void gen_run_code(void) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1
cache_addd(0xe12fff10 + (HOST_r3)); // bx r3
Bit8u *pos1, *pos2, *pos3;
// thumb state from now on
cache_addw(0xb500); // push {lr}
cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR
cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR
cache_addw(0xb4fc); // push {r2,r3,v1-v4}
#if (__ARM_EABI__)
// 8-byte stack alignment
cache_addd(0xe92d4ff0); // stmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe92d4df0); // stmfd sp!, {v1-v5,v7,v8,lr}
#endif
// adr: 16
cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)]
// adr: 18
cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)]
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_r0, HOST_r0, 1, 0) ); // add r0, r0, #1
// align 4
cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8
cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1
cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1
cache_addw(0xb408); // push {r3}
cache_addw( BX(HOST_r0) ); // bx r0
cache_addw( NOP ); // nop
pos1 = cache.pos;
cache_addd( 0 );
pos2 = cache.pos;
cache_addd( 0 );
pos3 = cache.pos;
cache_addd( 0 );
// align 4
cache_addw(0xbcfc); // pop {r2,r3,v1-v4}
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( ARM_STR_IMM_M_W(HOST_lr, HOST_sp, 4) ); // str lr, [sp, #-4]!
cache_addd( ARM_BX(HOST_r0) ); // bx r0
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
#if (__ARM_EABI__)
cache_addd(0xe8bd4ff0); // ldmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe8bd4df0); // ldmfd sp!, {v1-v5,v7,v8,lr}
#endif
cache_addd( ARM_BX(HOST_lr) ); // bx lr
// fill up to 64 bytes
cache_addw( NOP ); // nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
// adr: 64
*(Bit32u*)pos1 = ARM_LDR_IMM(FC_SEGS_ADDR, HOST_pc, cache.pos - (pos1 + 8)); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
*(Bit32u*)pos2 = ARM_LDR_IMM(FC_REGS_ADDR, HOST_pc, cache.pos - (pos2 + 8)); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
*(Bit32u*)pos3 = ARM_LDR_IMM(readdata_addr, HOST_pc, cache.pos - (pos3 + 8)); // ldr readdata_addr, [pc, #(&core_dynrec.readdata)]
cache_addd((Bit32u)&core_dynrec.readdata); // address of "core_dynrec.readdata"
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
}
// return from a function

View file

@ -50,15 +50,14 @@
// temporary register for LEA
#define TEMP_REG_DRC HOST_a4
#ifdef DRC_USE_REGS_ADDR
// used to hold the address of "cpu_regs" - preferably filled in function gen_run_code
#define FC_REGS_ADDR HOST_v7
#endif
#ifdef DRC_USE_SEGS_ADDR
// used to hold the address of "Segs" - preferably filled in function gen_run_code
#define FC_SEGS_ADDR HOST_v8
#endif
// used to hold the address of "core_dynrec.readdata" - filled in function gen_run_code
#define readdata_addr HOST_v5
// instruction encodings
@ -98,10 +97,14 @@
// logical
// and dst, src
#define AND(dst, src) (0x4000 + (dst) + ((src) << 3) )
// bic dst, src
#define BIC(dst, src) (0x4380 + (dst) + ((src) << 3) )
// eor dst, src
#define EOR(dst, src) (0x4040 + (dst) + ((src) << 3) )
// orr dst, src
#define ORR(dst, src) (0x4300 + (dst) + ((src) << 3) )
// mvn dst, src
#define MVN(dst, src) (0x43c0 + (dst) + ((src) << 3) )
// shift/rotate
// lsl dst, src, #imm
@ -128,6 +131,8 @@
#define LDRB_IMM(reg, addr, imm) (0x7800 + (reg) + ((addr) << 3) + ((imm) << 6) )
// ldr reg, [pc, #imm] @ 0 <= imm < 1024 & imm mod 4 = 0
#define LDR_PC_IMM(reg, imm) (0x4800 + ((reg) << 8) + ((imm) >> 2) )
// ldr reg, [addr1, addr2]
#define LDR_REG(reg, addr1, addr2) (0x5800 + (reg) + ((addr1) << 3) + ((addr2) << 6) )
// store
// str reg, [addr, #imm] @ 0 <= imm < 128 & imm mod 4 = 0
@ -150,30 +155,69 @@
#define BX(reg) (0x4700 + ((reg) << 3) )
// arm instructions
// arithmetic
// add dst, src, #(imm ror rimm) @ 0 <= imm <= 255 & rimm mod 2 = 0
#define ARM_ADD_IMM(dst, src, imm, rimm) (0xe2800000 + ((dst) << 12) + ((src) << 16) + (imm) + ((rimm) << 7) )
// load
// ldr reg, [addr, #imm] @ 0 <= imm < 4096
#define ARM_LDR_IMM(reg, addr, imm) (0xe5900000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// store
// str reg, [addr, #-(imm)]! @ 0 <= imm < 4096
#define ARM_STR_IMM_M_W(reg, addr, imm) (0xe5200000 + ((reg) << 12) + ((addr) << 16) + (imm) )
// branch
// bx reg
#define ARM_BX(reg) (0xe12fff10 + (reg) )
// move a full register from reg_src to reg_dst
static void gen_mov_regs(HostReg reg_dst,HostReg reg_src) {
if(reg_src == reg_dst) return;
cache_addw( MOV_REG(reg_dst, reg_src) ); // mov reg_dst, reg_src
}
// helper function
static bool val_single_shift(Bit32u value, Bit32u *val_shift) {
Bit32u shift;
if (GCC_UNLIKELY(value == 0)) {
*val_shift = 0;
return true;
}
shift = 0;
while ((value & 1) == 0) {
value>>=1;
shift+=1;
}
if ((value >> 8) != 0) return false;
*val_shift = shift;
return true;
}
// move a 32bit constant value into dest_reg
static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
if ((imm & 0xffffff00) == 0) {
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #(imm)
} else if ((imm & 0xffff00ff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 8) ); // mov dest_reg, #(imm >> 8)
cache_addw( LSL_IMM(dest_reg, dest_reg, 8) ); // lsl dest_reg, dest_reg, #8
} else if ((imm & 0xff00ffff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 16) ); // mov dest_reg, #(imm >> 16)
cache_addw( LSL_IMM(dest_reg, dest_reg, 16) ); // lsl dest_reg, dest_reg, #16
} else if ((imm & 0x00ffffff) == 0) {
cache_addw( MOV_IMM(dest_reg, imm >> 24) ); // mov dest_reg, #(imm >> 24)
cache_addw( LSL_IMM(dest_reg, dest_reg, 24) ); // lsl dest_reg, dest_reg, #24
Bit32u scale;
if (imm < 256) {
cache_addw( MOV_IMM(dest_reg, imm) ); // mov dest_reg, #imm
} else if ((~imm) < 256) {
cache_addw( MOV_IMM(dest_reg, ~imm) ); // mov dest_reg, #(~imm)
cache_addw( MVN(dest_reg, dest_reg) ); // mvn dest_reg, dest_reg
} else if (val_single_shift(imm, &scale)) {
cache_addw( MOV_IMM(dest_reg, imm >> scale) ); // mov dest_reg, #(imm >> scale)
cache_addw( LSL_IMM(dest_reg, dest_reg, scale) ); // lsl dest_reg, dest_reg, #scale
} else {
Bit32u diff;
diff = imm - ((Bit32u)cache.pos+4);
if ((diff < 1024) && ((imm & 0x03) == 0)) {
if (((Bit32u)cache.pos & 0x03) == 0) {
cache_addw( ADD_LO_PC_IMM(dest_reg, diff) ); // add dest_reg, pc, #(diff >> 2)
@ -198,10 +242,58 @@ static void gen_mov_dword_to_reg_imm(HostReg dest_reg,Bit32u imm) {
}
}
// helper function
static bool gen_mov_memval_to_reg_helper(HostReg dest_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDR_IMM(dest_reg, templo2, data - addr_data) ); // ldr dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRH_IMM(dest_reg, templo2, data - addr_data) ); // ldrh dest_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( LDRB_IMM(dest_reg, templo2, data - addr_data) ); // ldrb dest_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_to_reg(HostReg dest_reg, void *data, Bitu size) {
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_to_reg_helper(dest_reg, (Bit32u)data, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_to_reg
static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 3) {
if ( ((Bit32u)data & 3) == 2 ) {
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
@ -218,16 +310,21 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
}
} else {
} else
#endif
{
cache_addw( LDR_IMM(dest_reg, data_reg, 0) ); // ldr dest_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)data & 1) {
cache_addw( LDRB_IMM(dest_reg, data_reg, 0) ); // ldrb dest_reg, [data_reg]
cache_addw( LDRB_IMM(templo1, data_reg, 1) ); // ldrb templo1, [data_reg, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
cache_addw( ORR(dest_reg, templo1) ); // orr dest_reg, templo1
} else {
} else
#endif
{
cache_addw( LDRH_IMM(dest_reg, data_reg, 0) ); // ldrh dest_reg, [data_reg]
}
}
@ -236,8 +333,10 @@ static void gen_mov_word_to_reg_helper(HostReg dest_reg,void* data,bool dword,Ho
// move a 32bit (dword==true) or 16bit (dword==false) value from memory into dest_reg
// 16bit moves may destroy the upper 16bit of the destination register
static void gen_mov_word_to_reg(HostReg dest_reg,void* data,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
if (!gen_mov_memval_to_reg(dest_reg, data, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)data);
gen_mov_word_to_reg_helper(dest_reg, data, dword, templo2);
}
}
// move a 16bit constant value into dest_reg
@ -246,10 +345,58 @@ static void INLINE gen_mov_word_to_reg_imm(HostReg dest_reg,Bit16u imm) {
gen_mov_dword_to_reg_imm(dest_reg, (Bit32u)imm);
}
// helper function
static bool gen_mov_memval_from_reg_helper(HostReg src_reg, Bit32u data, Bitu size, HostReg addr_reg, Bit32u addr_data) {
switch (size) {
case 4:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 3) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 128) && (((data - addr_data) & 3) == 0)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STR_IMM(src_reg, templo2, data - addr_data) ); // str src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 2:
#if !defined(C_UNALIGNED_MEMORY)
if ((data & 1) == 0)
#endif
{
if ((data >= addr_data) && (data < addr_data + 64) && (((data - addr_data) & 1) == 0)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRH_IMM(src_reg, templo2, data - addr_data) ); // strh src_reg, [templo2, #(data - addr_data)]
return true;
}
}
break;
case 1:
if ((data >= addr_data) && (data < addr_data + 32)) {
cache_addw( MOV_LO_HI(templo2, addr_reg) ); // mov templo2, addr_reg
cache_addw( STRB_IMM(src_reg, templo2, data - addr_data) ); // strb src_reg, [templo2, #(data - addr_data)]
return true;
}
default:
break;
}
return false;
}
// helper function
static bool gen_mov_memval_from_reg(HostReg src_reg, void *dest, Bitu size) {
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_REGS_ADDR, (Bit32u)&cpu_regs)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, readdata_addr, (Bit32u)&core_dynrec.readdata)) return true;
if (gen_mov_memval_from_reg_helper(src_reg, (Bit32u)dest, size, FC_SEGS_ADDR, (Bit32u)&Segs)) return true;
return false;
}
// helper function for gen_mov_word_from_reg
static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword, HostReg data_reg) {
// alignment....
if (dword) {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 3) {
if ( ((Bit32u)dest & 3) == 2 ) {
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
@ -268,16 +415,21 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
cache_addw( LSR_IMM(templo1, templo1, 24) ); // lsr templo1, templo1, #24
cache_addw( STRB_IMM(templo1, data_reg, 3) ); // strb templo1, [data_reg, #3]
}
} else {
} else
#endif
{
cache_addw( STR_IMM(src_reg, data_reg, 0) ); // str src_reg, [data_reg]
}
} else {
#if !defined(C_UNALIGNED_MEMORY)
if ((Bit32u)dest & 1) {
cache_addw( STRB_IMM(src_reg, data_reg, 0) ); // strb src_reg, [data_reg]
cache_addw( MOV_REG(templo1, src_reg) ); // mov templo1, src_reg
cache_addw( LSR_IMM(templo1, templo1, 8) ); // lsr templo1, templo1, #8
cache_addw( STRB_IMM(templo1, data_reg, 1) ); // strb templo1, [data_reg, #1]
} else {
} else
#endif
{
cache_addw( STRH_IMM(src_reg, data_reg, 0) ); // strh src_reg, [data_reg]
}
}
@ -285,8 +437,10 @@ static void gen_mov_word_from_reg_helper(HostReg src_reg,void* dest,bool dword,
// move 32bit (dword==true) or 16bit (dword==false) of a register into memory
static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
if (!gen_mov_memval_from_reg(src_reg, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_from_reg_helper(src_reg, dest, dword, templo2);
}
}
// move an 8bit value from memory into dest_reg
@ -294,8 +448,10 @@ static void gen_mov_word_from_reg(HostReg src_reg,void* dest,bool dword) {
// this function does not use FC_OP1/FC_OP2 as dest_reg as these
// registers might not be directly byte-accessible on some architectures
static void gen_mov_byte_to_reg_low(HostReg dest_reg,void* data) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
if (!gen_mov_memval_to_reg(dest_reg, data, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)data);
cache_addw( LDRB_IMM(dest_reg, templo1, 0) ); // ldrb dest_reg, [templo1]
}
}
// move an 8bit value from memory into dest_reg
@ -324,8 +480,10 @@ static void INLINE gen_mov_byte_to_reg_low_imm_canuseword(HostReg dest_reg,Bit8u
// move the lowest 8bit of a register into memory
static void gen_mov_byte_from_reg_low(HostReg src_reg,void* dest) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
if (!gen_mov_memval_from_reg(src_reg, dest, 1)) {
gen_mov_dword_to_reg_imm(templo1, (Bit32u)dest);
cache_addw( STRB_IMM(src_reg, templo1, 0) ); // strb src_reg, [templo1]
}
}
@ -362,16 +520,51 @@ static void gen_add(HostReg reg,void* op) {
// add a 32bit constant value to a full register
static void gen_add_imm(HostReg reg,Bit32u imm) {
Bit32u imm2, scale;
if(!imm) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_addw( ADD_IMM8(reg, imm) ); // add reg, #imm
} else if (imm2 <= 255) {
cache_addw( SUB_IMM8(reg, imm2) ); // sub reg, #(-imm)
} else {
if (val_single_shift(imm2, &scale)) {
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( SUB_REG(reg, reg, templo1) ); // sub reg, reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( ADD_REG(reg, reg, templo1) ); // add reg, reg, templo1
}
}
}
// and a 32bit constant value with a full register
static void gen_and_imm(HostReg reg,Bit32u imm) {
if(imm == 0xffffffff) return;
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( AND(reg, templo1) ); // and reg, templo1
Bit32u imm2, scale;
imm2 = ~imm;
if(!imm2) return;
if (!imm) {
cache_addw( MOV_IMM(reg, 0) ); // mov reg, #0
} else {
if (val_single_shift(imm2, &scale)) {
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( BIC(reg, templo1) ); // bic reg, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( AND(reg, templo1) ); // and reg, templo1
}
}
}
@ -386,66 +579,65 @@ static void INLINE gen_mov_direct_ptr(void* dest,DRC_PTR_SIZE_IM imm) {
gen_mov_direct_dword(dest,(Bit32u)imm);
}
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
if (imm >= 0) {
cache_addw( ADD_IMM8(templo3, (Bit32s)imm) ); // add templo3, #(imm)
} else {
cache_addw( SUB_IMM8(templo3, -((Bit32s)imm)) ); // sub templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
}
// add a 32bit (dword==true) or 16bit (dword==false) constant value to a memory value
static void gen_add_direct_word(void* dest,Bit32u imm,bool dword) {
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_add_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
gen_add_imm(templo3, imm);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
if(!imm) return;
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, 1, templo2);
if (imm >= 0) {
cache_addw( SUB_IMM8(templo3, (Bit32s)imm) ); // sub templo3, #(imm)
} else {
cache_addw( ADD_IMM8(templo3, -((Bit32s)imm)) ); // add templo3, #(-imm)
}
gen_mov_word_from_reg_helper(templo3, dest, 1, templo2);
// add an 8bit constant value to a dword memory value
static void gen_add_direct_byte(void* dest,Bit8s imm) {
gen_add_direct_word(dest, (Bit32s)imm, 1);
}
// subtract a 32bit (dword==true) or 16bit (dword==false) constant value from a memory value
static void gen_sub_direct_word(void* dest,Bit32u imm,bool dword) {
Bit32u imm2, scale;
if (!dword) imm &= 0xffff;
if(!imm) return;
if (dword && ( (imm<128) || (imm>=0xffffff80) ) ) {
gen_sub_direct_byte(dest,(Bit8s)imm);
return;
if (!gen_mov_memval_to_reg(templo3, dest, (dword)?4:2)) {
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
}
gen_mov_dword_to_reg_imm(templo2, (Bit32u)dest);
gen_mov_word_to_reg_helper(templo3, dest, dword, templo2);
if (dword) {
gen_mov_dword_to_reg_imm(templo1, imm);
imm2 = (Bit32u) (-((Bit32s)imm));
if (imm <= 255) {
cache_addw( SUB_IMM8(templo3, imm) ); // sub templo3, #imm
} else if (imm2 <= 255) {
cache_addw( ADD_IMM8(templo3, imm2) ); // add templo3, #(-imm)
} else {
gen_mov_word_to_reg_imm(templo1, (Bit16u)imm);
if (val_single_shift(imm2, &scale)) {
cache_addw( MOV_IMM(templo1, imm2 >> scale) ); // mov templo1, #(~imm >> scale)
if (scale) {
cache_addw( LSL_IMM(templo1, templo1, scale) ); // lsl templo1, templo1, #scale
}
cache_addw( ADD_REG(templo3, templo3, templo1) ); // add templo3, templo3, templo1
} else {
gen_mov_dword_to_reg_imm(templo1, imm);
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
}
}
cache_addw( SUB_REG(templo3, templo3, templo1) ); // sub templo3, templo3, templo1
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
if (!gen_mov_memval_from_reg(templo3, dest, (dword)?4:2)) {
gen_mov_word_from_reg_helper(templo3, dest, dword, templo2);
}
}
// subtract an 8bit constant value from a dword memory value
static void gen_sub_direct_byte(void* dest,Bit8s imm) {
gen_sub_direct_word(dest, (Bit32s)imm, 1);
}
// effective address calculation, destination is dest_reg
@ -491,7 +683,7 @@ static void INLINE gen_call_function_raw(void * func) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (templo1 << 12) + (HOST_pc << 16) + (1)); // add templo1, pc, #1
cache_addd(0xe12fff10 + (templo1)); // bx templo1
// thumb state from now on
}
@ -537,18 +729,20 @@ static void INLINE gen_load_param_mem(Bitu mem,Bitu param) {
static void gen_jmp_ptr(void * ptr,Bits imm=0) {
gen_mov_word_to_reg(templo3, ptr, 1);
if (imm) {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_addw( ADD_REG(templo3, templo3, templo2) ); // add templo3, templo3, templo2
}
#if (1)
// (*ptr) should be word aligned
#if !defined(C_UNALIGNED_MEMORY)
// (*ptr) should be word aligned
if ((imm & 0x03) == 0) {
cache_addw( LDR_IMM(templo2, templo3, 0) ); // ldr templo2, [templo3]
} else
#endif
{
if ((imm >= 0) && (imm < 128) && ((imm & 3) == 0)) {
cache_addw( LDR_IMM(templo2, templo3, imm) ); // ldr templo2, [templo3, #imm]
} else {
gen_mov_dword_to_reg_imm(templo2, imm);
cache_addw( LDR_REG(templo2, templo3, templo2) ); // ldr templo2, [templo3, templo2]
}
#if !defined(C_UNALIGNED_MEMORY)
} else {
gen_add_imm(templo3, imm);
cache_addw( LDRB_IMM(templo2, templo3, 0) ); // ldrb templo2, [templo3]
cache_addw( LDRB_IMM(templo1, templo3, 1) ); // ldrb templo1, [templo3, #1]
cache_addw( LSL_IMM(templo1, templo1, 8) ); // lsl templo1, templo1, #8
@ -560,6 +754,7 @@ static void gen_jmp_ptr(void * ptr,Bits imm=0) {
cache_addw( LSL_IMM(templo1, templo1, 24) ); // lsl templo1, templo1, #24
cache_addw( ORR(templo2, templo1) ); // orr templo2, templo1
}
#endif
// increase jmp address to keep thumb state
cache_addw( ADD_IMM3(templo2, templo2, 1) ); // add templo2, templo2, #1
@ -650,50 +845,53 @@ static void INLINE gen_fill_branch_long(Bit32u data) {
}
static void gen_run_code(void) {
// switch from arm to thumb state
cache_addd(0xe2800000 + (HOST_r3 << 12) + (HOST_pc << 16) + (1)); // add r3, pc, #1
cache_addd(0xe12fff10 + (HOST_r3)); // bx r3
Bit8u *pos1, *pos2, *pos3;
// thumb state from now on
cache_addw(0xb500); // push {lr}
cache_addw( MOV_LO_HI(HOST_r3, FC_SEGS_ADDR) ); // mov r3, FC_SEGS_ADDR
cache_addw( MOV_LO_HI(HOST_r2, FC_REGS_ADDR) ); // mov r2, FC_REGS_ADDR
cache_addw(0xb4fc); // push {r2,r3,v1-v4}
#if (__ARM_EABI__)
// 8-byte stack alignment
cache_addd(0xe92d4ff0); // stmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe92d4df0); // stmfd sp!, {v1-v5,v7,v8,lr}
#endif
// adr: 16
cache_addw( LDR_PC_IMM(HOST_r3, 64 - (16 + 4)) ); // ldr r3, [pc, #(&Segs)]
// adr: 18
cache_addw( LDR_PC_IMM(HOST_r2, 68 - (18 + 2)) ); // ldr r2, [pc, #(&cpu_regs)]
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_r0, HOST_r0, 1, 0) ); // add r0, r0, #1
// align 4
cache_addw( ADD_LO_PC_IMM(HOST_r3, 8) ); // add r3, pc, #8
cache_addw( ADD_IMM8(HOST_r0, 1) ); // add r0, #1
cache_addw( ADD_IMM8(HOST_r3, 1) ); // add r3, #1
cache_addw(0xb408); // push {r3}
cache_addw( BX(HOST_r0) ); // bx r0
cache_addw( NOP ); // nop
pos1 = cache.pos;
cache_addd( 0 );
pos2 = cache.pos;
cache_addd( 0 );
pos3 = cache.pos;
cache_addd( 0 );
// align 4
cache_addw(0xbcfc); // pop {r2,r3,v1-v4}
cache_addw( MOV_HI_LO(FC_SEGS_ADDR, HOST_r3) ); // mov FC_SEGS_ADDR, r3
cache_addw( MOV_HI_LO(FC_REGS_ADDR, HOST_r2) ); // mov FC_REGS_ADDR, r2
cache_addd( ARM_ADD_IMM(HOST_lr, HOST_pc, 4, 0) ); // add lr, pc, #4
cache_addd( ARM_STR_IMM_M_W(HOST_lr, HOST_sp, 4) ); // str lr, [sp, #-4]!
cache_addd( ARM_BX(HOST_r0) ); // bx r0
cache_addw(0xbc08); // pop {r3}
cache_addw( BX(HOST_r3) ); // bx r3
#if (__ARM_EABI__)
cache_addd(0xe8bd4ff0); // ldmfd sp!, {v1-v8,lr}
#else
cache_addd(0xe8bd4df0); // ldmfd sp!, {v1-v5,v7,v8,lr}
#endif
cache_addd( ARM_BX(HOST_lr) ); // bx lr
// fill up to 64 bytes
cache_addw( NOP ); // nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
cache_addd( NOP | (NOP << 16) ); // nop, nop
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
// adr: 64
*(Bit32u*)pos1 = ARM_LDR_IMM(FC_SEGS_ADDR, HOST_pc, cache.pos - (pos1 + 8)); // ldr FC_SEGS_ADDR, [pc, #(&Segs)]
cache_addd((Bit32u)&Segs); // address of "Segs"
// adr: 68
*(Bit32u*)pos2 = ARM_LDR_IMM(FC_REGS_ADDR, HOST_pc, cache.pos - (pos2 + 8)); // ldr FC_REGS_ADDR, [pc, #(&cpu_regs)]
cache_addd((Bit32u)&cpu_regs); // address of "cpu_regs"
*(Bit32u*)pos3 = ARM_LDR_IMM(readdata_addr, HOST_pc, cache.pos - (pos3 + 8)); // ldr readdata_addr, [pc, #(&core_dynrec.readdata)]
cache_addd((Bit32u)&core_dynrec.readdata); // address of "core_dynrec.readdata"
// align cache.pos to 32 bytes
if ((((Bitu)cache.pos) & 0x1f) != 0) {
cache.pos = cache.pos + (32 - (((Bitu)cache.pos) & 0x1f));
}
}
// return from a function
@ -1023,7 +1221,11 @@ static void gen_fill_function_ptr(Bit8u * pos,void* fct_ptr,Bitu flags_type) {
}
#endif
static void cache_block_before_close(void) { }
static void cache_block_before_close(void) {
if ((((Bit32u)cache.pos) & 3) != 0) {
cache_addw( NOP ); // nop
}
}
#ifdef DRC_USE_SEGS_ADDR

View file

@ -18,13 +18,19 @@
/* ARMv4 (little endian) backend (switcher) by M-HT */
/* ARMv4/ARMv7 (little endian) backend (switcher) by M-HT */
#include "risc_armv4le-common.h"
// choose your destiny:
#include "risc_armv4le-thumb-niw.h"
//#include "risc_armv4le-thumb-iw.h"
//#include "risc_armv4le-thumb.h"
//#include "risc_armv4le-s3.h"
//#include "risc_armv4le-o3.h"
#if C_TARGETCPU == ARMV7LE
#include "risc_armv4le-o3.h"
#else
#if defined(__THUMB_INTERWORK__)
#include "risc_armv4le-thumb-iw.h"
#else
#include "risc_armv4le-o3.h"
// #include "risc_armv4le-thumb-niw.h"
// #include "risc_armv4le-thumb.h"
#endif
#endif