From 9d26cef41ce92c7c67b2d99befb9184bd2756894 Mon Sep 17 00:00:00 2001 From: Sjoerd van der Berg Date: Wed, 3 Mar 2004 15:47:07 +0000 Subject: [PATCH] Added dual opl2 and opl3 emulation. Fixed the sample rate config option not being used. Added different soundblaster type options. Imported-from: https://svn.code.sf.net/p/dosbox/code-0/dosbox/trunk@1699 --- src/hardware/Makefile.am | 5 +- src/hardware/adlib.cpp | 253 ++-- src/hardware/fmopl.c | 259 ++-- src/hardware/fmopl.h | 2 +- src/hardware/gameblaster.cpp | 6 +- src/hardware/sblaster.cpp | 63 +- src/hardware/ymf262.c | 2778 ++++++++++++++++++++++++++++++++++ src/hardware/ymf262.h | 53 + 8 files changed, 3168 insertions(+), 251 deletions(-) create mode 100644 src/hardware/ymf262.c create mode 100644 src/hardware/ymf262.h diff --git a/src/hardware/Makefile.am b/src/hardware/Makefile.am index 6335846b..b200390e 100644 --- a/src/hardware/Makefile.am +++ b/src/hardware/Makefile.am @@ -1,6 +1,6 @@ AM_CPPFLAGS = -I$(top_srcdir)/include -EXTRA_DIST = fmopl.c fmopl.h +EXTRA_DIST = fmopl.c fmopl.h ymf262.h ymf262.c noinst_LIBRARIES = libhardware.a @@ -10,3 +10,6 @@ libhardware_a_SOURCES = adlib.cpp dma.cpp gameblaster.cpp hardware.cpp iohandler vga_memory.cpp vga_misc.cpp vga_seq.cpp font-switch.h ega-switch.h cmos.cpp disney.cpp \ gus.cpp mpu401.cpp serialport.cpp softmodem.cpp ipx.cpp ipxserver.cpp + + + diff --git a/src/hardware/adlib.cpp b/src/hardware/adlib.cpp index f792f9fb..d0f99720 100644 --- a/src/hardware/adlib.cpp +++ b/src/hardware/adlib.cpp @@ -29,9 +29,7 @@ Thanks to vdmsound for nice simple way to implement this */ -namespace MAME { - /* Defines */ -# define logerror(x) +# define logerror #ifdef _MSC_VER /* Disable recurring warnings */ @@ -39,166 +37,137 @@ namespace MAME { # pragma warning ( disable : 4244 ) #endif - /* Work around ANSI compliance problem (see driver.h) */ - struct __MALLOCPTR { - void* m_ptr; +struct __MALLOCPTR { + void* m_ptr; - __MALLOCPTR(void) : m_ptr(NULL) { } - __MALLOCPTR(void* src) : m_ptr(src) { } - void* operator=(void* rhs) { return (m_ptr = rhs); } - operator int*() const { return (int*)m_ptr; } - operator int**() const { return (int**)m_ptr; } - operator char*() const { return (char*)m_ptr; } - }; - - /* Bring in the MAME OPL emulation */ -# define HAS_YM3812 1 -# include "fmopl.c" - -} - - -struct OPLTimer_t { - bool isEnabled; - bool isMasked; - bool isOverflowed; - Bit64u count; - Bit64u base; + __MALLOCPTR(void) : m_ptr(NULL) { } + __MALLOCPTR(void* src) : m_ptr(src) { } + void* operator=(void* rhs) { return (m_ptr = rhs); } + operator int*() const { return (int*)m_ptr; } + operator int**() const { return (int**)m_ptr; } + operator char*() const { return (char*)m_ptr; } }; -static OPLTimer_t timer1,timer2; -static Bit8u regsel; +namespace OPL2 { + #define HAS_YM3812 1 + #include "fmopl.c" + void TimerOver(Bitu val){ + YM3812TimerOver(val>>8,val & 0xff); + } + void TimerHandler(int channel,double interval_Sec) { + PIC_AddEvent(TimerOver,1000000*interval_Sec,channel); + } +} +#undef OSD_CPU_H +#undef TL_TAB_LEN +namespace OPL3 { + #define HAS_YMF262 1 + #include "ymf262.c" + void TimerOver(Bitu val){ + YMF262TimerOver(val>>8,val & 0xff); + } + void TimerHandler(int channel,double interval_Sec) { + PIC_AddEvent(TimerOver,1000000*interval_Sec,channel); + } +} -#define OPL_INTERNAL_FREQ 3600000 // The OPL operates at 3.6MHz -#define OPL_NUM_CHIPS 1 // Number of OPL chips -#define OPL_CHIP0 0 +#define OPL2_INTERNAL_FREQ 3600000 // The OPL2 operates at 3.6MHz +#define OPL3_INTERNAL_FREQ 14400000 // The OPL3 operates at 14.4MHz -static MIXER_Channel * adlib_chan; +static struct { + bool active; + OPL_Mode mode; + MIXER_Channel * chan; + Bit32u last_used; + Bit16s mixbuf[2][128]; +} opl; -static void ADLIB_CallBack(Bit8u *stream, Bit32u len) { +static void OPL_CallBack(Bit8u *stream, Bit32u len) { /* Check for size to update and check for 1 ms updates to the opl registers */ /* Calculate teh machine ms we are at now */ /* update 1 ms of data */ - MAME::YM3812UpdateOne(0,(MAME::INT16 *)stream,len); -} + Bitu i; + switch(opl.mode) { + case OPL_opl2: + OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)stream,len); + break; + case OPL_opl3: + OPL3::YMF262UpdateOne(0,(OPL2::INT16 *)stream,len); + break; + case OPL_dualopl2: + OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)opl.mixbuf[0],len); + OPL2::YM3812UpdateOne(1,(OPL2::INT16 *)opl.mixbuf[1],len); + for (i=0;itimer1.count) { - timer1.isOverflowed=true; - timer1.base=micro; - } - if (timer1.isOverflowed || !timer1.isMasked) { - ret|=0xc0; - } } - if (timer2.isEnabled) { - if ((micro-timer2.base)>timer2.count) { - timer2.isOverflowed=true; - timer2.base=micro; - } - if (timer2.isOverflowed || !timer2.isMasked) { - ret|=0xA0; - } - } - return ret; -} - -static void write_p388(Bit32u port,Bit8u val) { - regsel=val; - - // The following writes this value to ultrasounds equivalent register. - // I don't know of any other way to do this - IO_Write(0x248,val); -} - -static void write_p389(Bit32u port,Bit8u val) { - switch (regsel) { - case 0x02: /* Timer 1 */ - timer1.count=val*80; - return; - case 0x03: /* Timer 2 */ - timer2.count=val*320; - return; - case 0x04: /* IRQ clear / mask and Timer enable */ - if (val&0x80) { - timer1.isOverflowed=false; - timer2.isOverflowed=false; - return; - } - if (val&0x40) timer1.isMasked=true; - else timer1.isMasked=false; - - if (val&1) { - timer1.isEnabled=true; - timer1.base=PIC_MicroCount(); - } else timer1.isEnabled=false; - if (val&0x20) timer2.isMasked=true; - else timer2.isMasked=false; - if (val&2) { - timer2.isEnabled=true; - timer2.base=PIC_MicroCount(); - } else timer2.isEnabled=false; - return; - default: /* Normal OPL call queue it */ - /* Use a little hack to directly write to the register */ - MAME::OPLWriteReg(MAME::OPL_YM3812[0],regsel,val); + if ((PIC_Ticks-opl.last_used)>1000) { + MIXER_Enable(opl.chan,false); + opl.active=false; } } -static bool adlib_enabled; +Bit8u OPL_Read(Bit32u port) { + Bitu addr=port & 3; + switch (opl.mode) { + case OPL_opl2: + return OPL2::YM3812Read(0,addr); + case OPL_dualopl2: + return OPL2::YM3812Read(addr>>1,addr); + case OPL_opl3: + return OPL3::YMF262Read(0,addr); + } + return 0xff; +} -static void ADLIB_Enable(bool enable) { - if (enable) { - adlib_enabled=true; - MIXER_Enable(adlib_chan,true); - IO_RegisterWriteHandler(0x388,write_p388,"ADLIB Register select"); - IO_RegisterWriteHandler(0x389,write_p389,"ADLIB Data Write"); - IO_RegisterReadHandler(0x388,read_p388,"ADLIB Status"); - - IO_RegisterWriteHandler(0x220,write_p388,"ADLIB Register select"); - IO_RegisterWriteHandler(0x221,write_p389,"ADLIB Data Write"); - IO_RegisterReadHandler(0x220,read_p388,"ADLIB Status"); - } else { - adlib_enabled=false; - MIXER_Enable(adlib_chan,false); - IO_FreeWriteHandler(0x220); - IO_FreeWriteHandler(0x221); - IO_FreeReadHandler(0x220); - IO_FreeWriteHandler(0x388); - IO_FreeWriteHandler(0x389); - IO_FreeReadHandler(0x388); +void OPL_Write(Bit32u port,Bit8u val) { + opl.last_used=PIC_Ticks; + if (!opl.active) { + opl.active=true; + MIXER_Enable(opl.chan,true); + } + Bitu addr=port & 3; + switch (opl.mode) { + case OPL_opl2: + OPL2::YM3812Write(0,addr,val); + break; + case OPL_opl3: + OPL3::YMF262Write(0,addr,val); + break; + case OPL_dualopl2: + OPL2::YM3812Write(addr>>1,addr,val); + break; } } - -void ADLIB_Init(Section* sec) { +void OPL_Init(Section* sec,OPL_Mode oplmode,Bitu rate) { + Bitu i; Section_prop * section=static_cast(sec); - if(!section->Get_bool("adlib")) return; - - timer1.isMasked=true; - timer1.base=0; - timer1.count=0; - timer1.isEnabled=false; - timer1.isOverflowed=false; - - timer2.isMasked=true; - timer2.base=0; - timer2.count=0; - timer2.isEnabled=false; - timer2.isOverflowed=false; - - #define ADLIB_FREQ 22050 - if (MAME::YM3812Init(OPL_NUM_CHIPS,OPL_INTERNAL_FREQ,ADLIB_FREQ)) { - E_Exit("Can't create adlib OPL Emulator"); + if (OPL2::YM3812Init(2,OPL2_INTERNAL_FREQ,rate)) { + E_Exit("Can't create OPL2 Emulator"); }; + OPL2::YM3812SetTimerHandler(0,OPL2::TimerHandler,0); + OPL2::YM3812SetTimerHandler(1,OPL2::TimerHandler,256); + if (OPL3::YMF262Init(1,OPL3_INTERNAL_FREQ,rate)) { + E_Exit("Can't create OPL3 Emulator"); + }; + OPL3::YMF262SetTimerHandler(0,OPL3::TimerHandler,0); + for (i=0;i<4;i++) { + IO_RegisterWriteHandler(0x388+i,OPL_Write,"OPL Write"); + IO_RegisterReadHandler(0x388+i,OPL_Read,"OPL read"); + IO_RegisterWriteHandler(0x220+i,OPL_Write,"OPL Write"); + IO_RegisterReadHandler(0x220+i,OPL_Read,"OPL read"); + } + opl.active=false; + opl.last_used=0; + opl.mode=oplmode; - - adlib_chan=MIXER_AddChannel(ADLIB_CallBack,ADLIB_FREQ,"ADLIB"); - MIXER_SetMode(adlib_chan,MIXER_16MONO); - ADLIB_Enable(true); + opl.chan=MIXER_AddChannel(OPL_CallBack,rate,"ADLIB"); + MIXER_SetMode(opl.chan,(opl.mode>OPL_opl2) ? MIXER_16STEREO : MIXER_16MONO); + MIXER_Enable(opl.chan,false); }; diff --git a/src/hardware/fmopl.c b/src/hardware/fmopl.c index b4d7c8e4..5a838eb5 100644 --- a/src/hardware/fmopl.c +++ b/src/hardware/fmopl.c @@ -3,14 +3,23 @@ ** File: fmopl.c - software implementation of FM sound generator ** types OPL and OPL2 ** +** Copyright (C) 2002,2003 Jarek Burczynski (bujar at mame dot net) ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development -** Copyright (C) 2002 Jarek Burczynski ** -** Version 0.60 +** Version 0.70 ** Revision History: +14-06-2003 Jarek Burczynski: + - implemented all of the status register flags in Y8950 emulation + - renamed Y8950SetDeltaTMemory() parameters from _rom_ to _mem_ since + they can be either RAM or ROM + +08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip) + - corrected YM3526Read() to always set bit 2 and bit 1 + to HIGH state - identical to YM3812Read (verified on real YM3526) + 04-28-2002 Jarek Burczynski: - binary exact Envelope Generator (verified on real YM3812); compared to YM2151: the EG clock is equal to internal_clock, @@ -51,9 +60,8 @@ Revision History: #include #include -#include -#include #include + //#include "driver.h" /* use M.A.M.E. */ #include "fmopl.h" @@ -117,10 +125,45 @@ Revision History: /*#define SAVE_SAMPLE*/ #ifdef SAVE_SAMPLE +INLINE signed int acc_calc(signed int value) +{ + if (value>=0) + { + if (value < 0x0200) + return (value & ~0); + if (value < 0x0400) + return (value & ~1); + if (value < 0x0800) + return (value & ~3); + if (value < 0x1000) + return (value & ~7); + if (value < 0x2000) + return (value & ~15); + if (value < 0x4000) + return (value & ~31); + return (value & ~63); + } + /*else value < 0*/ + if (value > -0x0200) + return (~abs(value) & ~0); + if (value > -0x0400) + return (~abs(value) & ~1); + if (value > -0x0800) + return (~abs(value) & ~3); + if (value > -0x1000) + return (~abs(value) & ~7); + if (value > -0x2000) + return (~abs(value) & ~15); + if (value > -0x4000) + return (~abs(value) & ~31); + return (~abs(value) & ~63); +} + + static FILE *sample[1]; #if 1 /*save to MONO file */ #define SAVE_ALL_CHANNELS \ - { signed int pom = lt; \ + { signed int pom = acc_calc(lt); \ fputc((unsigned short)pom&0xff,sample[0]); \ fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ } @@ -155,8 +198,6 @@ static FILE *sample[1]; -/* Saving is necessary for member of the 'R' mark for suspend/resume */ - typedef struct{ UINT32 ar; /* attack rate: AR<<2 */ UINT32 dr; /* decay rate: DR<<2 */ @@ -181,14 +222,12 @@ typedef struct{ INT32 TLL; /* adjusted now TL */ INT32 volume; /* envelope counter */ UINT32 sl; /* sustain level: sl_tab[SL] */ - UINT8 eg_sh_ar; /* (attack state) */ UINT8 eg_sel_ar; /* (attack state) */ UINT8 eg_sh_dr; /* (decay state) */ UINT8 eg_sel_dr; /* (decay state) */ UINT8 eg_sh_rr; /* (release state) */ UINT8 eg_sel_rr; /* (release state) */ - UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */ /* LFO */ @@ -244,7 +283,7 @@ typedef struct fm_opl_f { YM_DELTAT *deltat; - /* Keyboard / I/O interface unit*/ + /* Keyboard and I/O ports interface */ UINT8 portDirection; UINT8 portLatch; OPL_PORTHANDLER_R porthandler_r; @@ -375,7 +414,7 @@ static const unsigned char eg_inc[15*RATE_STEPS]={ /*note that there is no O(13) in this table - it's directly in the code */ static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ -/* 16 dummy (infinite time) rates */ +/* 16 infinite time rates */ O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), @@ -410,13 +449,13 @@ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), }; #undef O -//rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 -//shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 -//mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 +/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ +/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ +/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ #define O(a) (a*1) static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ -/* 16 dummy (infinite time) rates */ +/* 16 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), @@ -586,15 +625,15 @@ static const INT8 lfo_pm_table[8*8*2] = { /* lock level of common table */ static int num_lock = 0; -/* work table */ -static void *cur_chip = NULL; /* current chip point */ -OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; -static signed int phase_modulation; /* phase modulation input (SLOT 2) */ +static void *cur_chip = NULL; /* current chip pointer */ +static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2; + +static signed int phase_modulation; /* phase modulation input (SLOT 2) */ static signed int output[1]; #if BUILD_Y8950 -static INT32 output_deltat[4]; /* for Y8950 DELTA-T */ +static INT32 output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */ #endif static UINT32 LFO_AM; @@ -699,8 +738,6 @@ INLINE void advance(FM_OPL *OPL) switch(op->state) { case EG_ATT: /* attack phase */ - { - if ( !(OPL->eg_cnt & ((1<eg_sh_ar)-1) ) ) { op->volume += (~op->volume * @@ -714,8 +751,6 @@ INLINE void advance(FM_OPL *OPL) } } - - } break; case EG_DEC: /* decay phase */ @@ -792,7 +827,7 @@ INLINE void advance(FM_OPL *OPL) { block_fnum += lfo_fn_table_index_offset; block = (block_fnum&0x1c00) >> 10; - op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;//ok + op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; } else /* LFO phase modulation = zero */ { @@ -857,15 +892,8 @@ INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigne INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) { UINT32 p; - INT32 i; - i = (phase & ~FREQ_MASK) + pm; - -/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/ - - p = (env<<4) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)]; - -/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/ + p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; @@ -966,7 +994,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) if (!SLOT->CON) phase_modulation = SLOT->op1_out[0]; - //else ignore output of operator 1 + /* else ignore output of operator 1 */ SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) @@ -984,16 +1012,16 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) /* Phase generation is based on: */ - // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) - // SD (16) channel 7->slot 1 - // TOM (14) channel 8->slot 1 - // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) + /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */ + /* SD (16) channel 7->slot 1 */ + /* TOM (14) channel 8->slot 1 */ + /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */ /* Envelope generation based on: */ - // HH channel 7->slot1 - // SD channel 7->slot2 - // TOM channel 8->slot1 - // TOP channel 8->slot2 + /* HH channel 7->slot1 */ + /* SD channel 7->slot2 */ + /* TOM channel 8->slot1 */ + /* TOP channel 8->slot2 */ /* The following formulas can be well optimized. @@ -1048,7 +1076,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) phase = 0xd0>>2; } - output[0] += op_calc(phase<wavetable) * 2; + output[0] += op_calc(phase<wavetable) * 2; } /* Snare Drum (verified on real YM3812) */ @@ -1069,13 +1097,13 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) if (noise) phase ^= 0x100; - output[0] += op_calc(phase<wavetable) * 2; + output[0] += op_calc(phase<wavetable) * 2; } /* Tom Tom (verified on real YM3812) */ env = volume_calc(SLOT8_1); if( env < ENV_QUIET ) - output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT->wavetable) * 2; + output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; /* Top Cymbal (verified on real YM3812) */ env = volume_calc(SLOT8_2); @@ -1102,7 +1130,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise ) if (res2) phase = 0x300; - output[0] += op_calc(phase<wavetable) * 2; + output[0] += op_calc(phase<wavetable) * 2; } } @@ -1229,13 +1257,14 @@ static void OPL_initalize(FM_OPL *OPL) int i; /* frequency base */ -#if 1 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0; -#else +#if 0 OPL->rate = (double)OPL->clock / 72.0; OPL->freqbase = 1.0; #endif + /*logerror("freqbase=%f\n", OPL->freqbase);*/ + /* Timer base time */ OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 ); @@ -1458,9 +1487,11 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v) { /* set IRQ mask ,timer enable*/ UINT8 st1 = v&1; UINT8 st2 = (v>>1)&1; + /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ - OPL_STATUS_RESET(OPL,v&0x78); - OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); + OPL_STATUS_RESET(OPL, v & 0x78 ); + OPL_STATUSMASK_SET(OPL, (~v) & 0x78 ); + /* timer 2 */ if(OPL->st[1] != st2) { @@ -1484,34 +1515,43 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v) if(OPL->keyboardhandler_w) OPL->keyboardhandler_w(OPL->keyboard_param,v); else - logerror("OPL:write unmapped KEYBOARD port\n"); + logerror("Y8950: write unmapped KEYBOARD port\n"); } break; - case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ + case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ if(OPL->type&OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); break; - case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ +#endif + case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ OPL->mode = v; - v&=0x1f; /* for DELTA-T unit */ +#if BUILD_Y8950 + if(OPL->type&OPL_TYPE_ADPCM) + YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */ +#endif + break; + +#if BUILD_Y8950 case 0x09: /* START ADD */ case 0x0a: case 0x0b: /* STOP ADD */ case 0x0c: case 0x0d: /* PRESCALE */ case 0x0e: - case 0x0f: /* ADPCM data */ + case 0x0f: /* ADPCM data write */ case 0x10: /* DELTA-N */ case 0x11: /* DELTA-N */ - case 0x12: /* EG-CTRL */ + case 0x12: /* ADPCM volume */ if(OPL->type&OPL_TYPE_ADPCM) YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); break; -#if 0 - case 0x15: /* DAC data */ - case 0x16: - case 0x17: /* SHIFT */ + + case 0x15: /* DAC data high 8 bits (F7,F6...F2) */ + case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */ + case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */ + logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v); break; + case 0x18: /* I/O CTRL (Direction) */ if(OPL->type&OPL_TYPE_IO) OPL->portDirection = v&0x0f; @@ -1524,10 +1564,10 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v) OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); } break; - case 0x1a: /* PCM data */ +#endif + default: + logerror("FMOPL.C: write to unknown register: %02x\n",r); break; -#endif -#endif } break; case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ @@ -1773,7 +1813,7 @@ static void OPLResetChip(FM_OPL *OPL) #endif } -/* Create one of virtual YM3812 */ +/* Create one of virtual YM3812/YM3526/Y8950 */ /* 'clock' is chip clock in Hz */ /* 'rate' is sampling rate */ static FM_OPL *OPLCreate(int type, int clock, int rate) @@ -1806,7 +1846,9 @@ static FM_OPL *OPLCreate(int type, int clock, int rate) #if BUILD_Y8950 if (type&OPL_TYPE_ADPCM) + { OPL->deltat = (YM_DELTAT *)ptr; + } ptr += sizeof(YM_DELTAT); #endif @@ -1817,8 +1859,6 @@ static FM_OPL *OPLCreate(int type, int clock, int rate) /* init global tables */ OPL_initalize(OPL); - /* reset chip */ - OPLResetChip(OPL); return OPL; } @@ -1829,7 +1869,7 @@ static void OPLDestroy(FM_OPL *OPL) free(OPL); } -/* Option handlers */ +/* Optional handlers */ static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) { @@ -1847,7 +1887,6 @@ static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int OPL->UpdateParam = param; } -/* YM3812 I/O interface */ static int OPLWrite(FM_OPL *OPL,int a,int v) { if( !(a&1) ) @@ -1867,6 +1906,17 @@ static unsigned char OPLRead(FM_OPL *OPL,int a) if( !(a&1) ) { /* status port */ + + #if BUILD_Y8950 + + if(OPL->type&OPL_TYPE_ADPCM) /* Y8950 */ + { + return (OPL->status & (OPL->statusmask|0x80)) | (OPL->deltat->PCM_BSY&1); + } + + #endif + + /* OPL and OPL2 */ return OPL->status & (OPL->statusmask|0x80); } @@ -1880,23 +1930,36 @@ static unsigned char OPLRead(FM_OPL *OPL,int a) if(OPL->keyboardhandler_r) return OPL->keyboardhandler_r(OPL->keyboard_param); else - logerror("OPL:read unmapped KEYBOARD port\n"); + logerror("Y8950: read unmapped KEYBOARD port\n"); } return 0; -#if 0 + case 0x0f: /* ADPCM-DATA */ + if(OPL->type&OPL_TYPE_ADPCM) + { + UINT8 val; + + val = YM_DELTAT_ADPCM_Read(OPL->deltat); + /*logerror("Y8950: read ADPCM value read=%02x\n",val);*/ + return val; + } return 0; -#endif + case 0x19: /* I/O DATA */ if(OPL->type&OPL_TYPE_IO) { if(OPL->porthandler_r) return OPL->porthandler_r(OPL->port_param); else - logerror("OPL:read unmapped I/O port\n"); + logerror("Y8950:read unmapped I/O port\n"); } return 0; case 0x1a: /* PCM-DATA */ + if(OPL->type&OPL_TYPE_ADPCM) + { + logerror("Y8950 A/D convertion is accessed but not implemented !\n"); + return 0x80; /* 2's complement PCM data - result from A/D convertion */ + } return 0; } #endif @@ -1968,6 +2031,8 @@ int YM3812Init(int num, int clock, int rate) YM3812NumChips = 0; return -1; } + /* reset */ + YM3812ResetChip(i); } return 0; @@ -2076,7 +2141,10 @@ void YM3812UpdateOne(int which, INT16 *buffer, int length) lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE + if (which==0) + { SAVE_ALL_CHANNELS + } #endif /* store to sound buffer */ @@ -2114,6 +2182,8 @@ int YM3526Init(int num, int clock, int rate) YM3526NumChips = 0; return -1; } + /* reset */ + YM3526ResetChip(i); } return 0; @@ -2143,7 +2213,8 @@ int YM3526Write(int which, int a, int v) unsigned char YM3526Read(int which, int a) { - return OPLRead(OPL_YM3526[which], a); + /* YM3526 always returns bit2 and bit1 in HIGH state */ + return OPLRead(OPL_YM3526[which], a) | 0x06 ; } int YM3526TimerOver(int which, int c) { @@ -2221,7 +2292,10 @@ void YM3526UpdateOne(int which, INT16 *buffer, int length) lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE + if (which==0) + { SAVE_ALL_CHANNELS + } #endif /* store to sound buffer */ @@ -2241,6 +2315,15 @@ void YM3526UpdateOne(int which, INT16 *buffer, int length) static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */ static int Y8950NumChips = 0; /* number of chips */ +static void Y8950_deltat_status_set(UINT8 which, UINT8 changebits) +{ + OPL_STATUS_SET(OPL_Y8950[which], changebits); +} +static void Y8950_deltat_status_reset(UINT8 which, UINT8 changebits) +{ + OPL_STATUS_RESET(OPL_Y8950[which], changebits); +} + int Y8950Init(int num, int clock, int rate) { int i; @@ -2260,6 +2343,13 @@ int Y8950Init(int num, int clock, int rate) Y8950NumChips = 0; return -1; } + OPL_Y8950[i]->deltat->status_set_handler = Y8950_deltat_status_set; + OPL_Y8950[i]->deltat->status_reset_handler = Y8950_deltat_status_reset; + OPL_Y8950[i]->deltat->status_change_which_chip = i; + OPL_Y8950[i]->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */ + OPL_Y8950[i]->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */ + /* reset */ + Y8950ResetChip(i); } return 0; @@ -2309,11 +2399,11 @@ void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param) OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param); } -void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size ) +void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size ) { FM_OPL *OPL = OPL_Y8950[which]; - OPL->deltat->memory = (UINT8 *)(deltat_rom); - OPL->deltat->memory_size = deltat_rom_size; + OPL->deltat->memory = (UINT8 *)(deltat_mem_ptr); + OPL->deltat->memory_size = deltat_mem_size; } /* @@ -2331,9 +2421,6 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length) YM_DELTAT *DELTAT = OPL->deltat; OPLSAMPLE *buf = buffer; - /* setup DELTA-T unit */ - YM_DELTAT_DECODE_PRESET(DELTAT); - if( (void *)OPL != cur_chip ){ cur_chip = (void *)OPL; /* rhythm slots */ @@ -2353,7 +2440,7 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length) advance_lfo(OPL); /* deltaT ADPCM */ - if( DELTAT->portstate ) + if( DELTAT->portstate&0x80 ) YM_DELTAT_ADPCM_CALC(DELTAT); /* FM part */ @@ -2383,7 +2470,10 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length) lt = limit( lt , MAXOUT, MINOUT ); #ifdef SAVE_SAMPLE + if (which==0) + { SAVE_ALL_CHANNELS + } #endif /* store to sound buffer */ @@ -2392,15 +2482,6 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length) advance(OPL); } - /* deltaT START flag */ - if( !DELTAT->portstate ) - OPL->status &= 0xfe; - - if( DELTAT->eos ) //AT: set bit 4 of OPL status register on EOS - { - DELTAT->eos = 0; - OPL->status |= 0x10; - } } void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) diff --git a/src/hardware/fmopl.h b/src/hardware/fmopl.h index 4ba2b6b8..5a605fce 100644 --- a/src/hardware/fmopl.h +++ b/src/hardware/fmopl.h @@ -91,7 +91,7 @@ void YM3526SetUpdateHandler(int which, OPL_UPDATEHANDLER UpdateHandler, int para /* Y8950 port handlers */ void Y8950SetPortHandler(int which, OPL_PORTHANDLER_W PortHandler_w, OPL_PORTHANDLER_R PortHandler_r, int param); void Y8950SetKeyboardHandler(int which, OPL_PORTHANDLER_W KeyboardHandler_w, OPL_PORTHANDLER_R KeyboardHandler_r, int param); -void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size ); +void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size ); int Y8950Init (int num, int clock, int rate); void Y8950Shutdown (void); diff --git a/src/hardware/gameblaster.cpp b/src/hardware/gameblaster.cpp index f877bf4a..5bb1dcd4 100644 --- a/src/hardware/gameblaster.cpp +++ b/src/hardware/gameblaster.cpp @@ -420,10 +420,10 @@ static void write_cms(Bit32u port,Bit8u val) { } -void CMS_Init(Section* sec) { + void CMS_Init(Section* sec,Bitu rate) { Section_prop * section=static_cast(sec); if(!section->Get_bool("cms")) return; - sample_rate=section->Get_int("cmsrate"); + sample_rate=rate; IO_RegisterWriteHandler(0x220,write_cms,"CMS"); IO_RegisterWriteHandler(0x221,write_cms,"CMS"); @@ -432,7 +432,7 @@ void CMS_Init(Section* sec) { /* Register the Mixer CallBack */ - cms_chan=MIXER_AddChannel(CMS_CallBack,CMS_RATE,"CMS"); + cms_chan=MIXER_AddChannel(CMS_CallBack,rate,"CMS"); MIXER_SetMode(cms_chan,MIXER_16STEREO); MIXER_Enable(cms_chan,true); last_command=PIC_Ticks; diff --git a/src/hardware/sblaster.cpp b/src/hardware/sblaster.cpp index 7a28c284..742fcc1f 100644 --- a/src/hardware/sblaster.cpp +++ b/src/hardware/sblaster.cpp @@ -25,6 +25,7 @@ #include "pic.h" #include "hardware.h" #include "setup.h" +#include "support.h" #include "programs.h" #define SB_PIC_EVENTS 0 @@ -53,9 +54,9 @@ #define SB_BUF_SIZE 8096 enum {DSP_S_RESET,DSP_S_NORMAL,DSP_S_HIGHSPEED}; +enum SB_TYPES {SBT_NONE=0,SBT_1=1,SBT_PRO1=2,SBT_2=3,SBT_PRO2=4,SBT_16=6}; enum SB_IRQS {SB_IRQ_8,SB_IRQ_16,SB_IRQ_MPU}; - enum DSP_MODES { MODE_NONE,MODE_DAC, MODE_SILENCE, @@ -94,6 +95,8 @@ struct SB_INFO { Bit8u time_constant; bool use_time_constant; DSP_MODES mode; + SB_TYPES type; + OPL_Mode oplmode; struct { bool pending_8bit; bool pending_16bit; @@ -907,9 +910,6 @@ static Bit8u read_sb(Bit32u port) { return 0xff; } return 0xff; -/* For now loop FM Stuff to 0x388 */ - case 0x00: case 0x02: case 0x08: - return IO_Read(0x388); case DSP_RESET: return 0xff; default: @@ -933,14 +933,6 @@ static void write_sb(Bit32u port,Bit8u val) { case MIXER_DATA: MIXER_Write(val); break; -/* For now loop FM Stuff to 0x388 */ - case 0x00: case 0x02: case 0x08: - IO_Write(0x388,val); - break; - case 0x01: case 0x03: case 0x09: - IO_Write(0x389,val); - break; - default: LOG(LOG_SB,LOG_NORMAL)("Unhandled write to SB Port %4X",port); break; @@ -964,7 +956,48 @@ static void SBLASTER_CallBack(Bit8u * stream,Bit32u len) { void SBLASTER_Init(Section* sec) { Bitu i; Section_prop * section=static_cast(sec); - if(!section->Get_bool("sblaster")) return; + const char * sbtype=section->Get_string("type"); + if (!strcasecmp(sbtype,"sb1")) sb.type=SBT_1; + else if (!strcasecmp(sbtype,"sb2")) sb.type=SBT_2; + else if (!strcasecmp(sbtype,"sbpro1")) sb.type=SBT_PRO1; + else if (!strcasecmp(sbtype,"sbpro2")) sb.type=SBT_PRO2; + else if (!strcasecmp(sbtype,"sb16")) sb.type=SBT_16; + else if (!strcasecmp(sbtype,"none")) sb.type=SBT_NONE; + else sb.type=SBT_16; + + /* OPL/CMS Init */ + const char * omode=section->Get_string("oplmode"); + Bitu oplrate=section->Get_int("oplrate"); + OPL_Mode opl_mode; + if (!strcasecmp(omode,"none")) opl_mode=OPL_none; + else if (!strcasecmp(omode,"cms")) opl_mode=OPL_cms; + else if (!strcasecmp(omode,"opl2")) opl_mode=OPL_opl2; + else if (!strcasecmp(omode,"dualopl2")) opl_mode=OPL_dualopl2; + else if (!strcasecmp(omode,"opl3")) opl_mode=OPL_opl3; + /* Else assume auto */ + else { + switch (sb.type) { + case SBT_NONE:opl_mode=OPL_none;break; + case SBT_1:opl_mode=OPL_cms;break; + case SBT_2:opl_mode=OPL_opl2;break; + case SBT_PRO1:opl_mode=OPL_dualopl2;break; + case SBT_PRO2: + case SBT_16: + opl_mode=OPL_opl3;break; + } + } + switch (opl_mode) { + case OPL_none: + break; + case OPL_cms: + CMS_Init(section,oplrate); + break; + case OPL_opl2: + case OPL_dualopl2: + case OPL_opl3: + OPL_Init(section,opl_mode,oplrate); + break; + } sb.chan=MIXER_AddChannel(&SBLASTER_CallBack,22050,"SBLASTER"); MIXER_Enable(sb.chan,false); sb.dsp.state=DSP_S_NORMAL; @@ -982,6 +1015,6 @@ void SBLASTER_Init(Section* sec) { } PIC_RegisterIRQ(sb.hw.irq,0,"SB"); DSP_Reset(); - - SHELL_AddAutoexec("SET BLASTER=A%3X I%d D%d T4",sb.hw.base,sb.hw.irq,sb.hw.dma8); + SHELL_AddAutoexec("SET BLASTER=A%3X I%d D%d T%d",sb.hw.base,sb.hw.irq,sb.hw.dma8,sb.type); } + diff --git a/src/hardware/ymf262.c b/src/hardware/ymf262.c new file mode 100644 index 00000000..5ecaa05f --- /dev/null +++ b/src/hardware/ymf262.c @@ -0,0 +1,2778 @@ +/* +** +** File: ymf262.c - software implementation of YMF262 +** FM sound generator type OPL3 +** +** Copyright (C) 2003 Jarek Burczynski +** +** Version 0.2 +** + +Revision History: + +03-03-2003: initial release + - thanks to Olivier Galibert and Chris Hardy for YMF262 and YAC512 chips + - thanks to Stiletto for the datasheets + + + +differences between OPL2 and OPL3 not documented in Yamaha datahasheets: +- sinus table is a little different: the negative part is off by one... + +- in order to enable selection of four different waveforms on OPL2 + one must set bit 5 in register 0x01(test). + on OPL3 this bit is ignored and 4-waveform select works *always*. + (Don't confuse this with OPL3's 8-waveform select.) + +- Envelope Generator: all 15 x rates take zero time on OPL3 + (on OPL2 15 0 and 15 1 rates take some time while 15 2 and 15 3 rates + take zero time) + +- channel calculations: output of operator 1 is in perfect sync with + output of operator 2 on OPL3; on OPL and OPL2 output of operator 1 + is always delayed by one sample compared to output of operator 2 + + +differences between OPL2 and OPL3 shown in datasheets: +- YMF262 does not support CSM mode + + +*/ + +#include +#include +#include + +//#include "driver.h" /* use M.A.M.E. */ +#include "ymf262.h" + +#ifndef PI +#define PI 3.14159265358979323846 +#endif + + + +/* output final shift */ +#if (OPL3_SAMPLE_BITS==16) + #define FINAL_SH (0) + #define MAXOUT (+32767) + #define MINOUT (-32768) +#else + #define FINAL_SH (8) + #define MAXOUT (+127) + #define MINOUT (-128) +#endif + + +#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ +#define EG_SH 16 /* 16.16 fixed point (EG timing) */ +#define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */ +#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ + +#define FREQ_MASK ((1<>8)&0xff,sample[0]); \ + } + #else /*save to STEREO file */ + #define SAVE_ALL_CHANNELS \ + { signed int pom = a; \ + fputc((unsigned short)pom&0xff,sample[0]); \ + fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ + pom = b; \ + fputc((unsigned short)pom&0xff,sample[0]); \ + fputc(((unsigned short)pom>>8)&0xff,sample[0]); \ + } + #endif +#endif + +/*#define LOG_CYM_FILE*/ +#ifdef LOG_CYM_FILE + FILE * cymfile = NULL; +#endif + + + + + +#define OPL3_TYPE_YMF262 (0) /* 36 operators, 8 waveforms */ + + +typedef struct{ + UINT32 ar; /* attack rate: AR<<2 */ + UINT32 dr; /* decay rate: DR<<2 */ + UINT32 rr; /* release rate:RR<<2 */ + UINT8 KSR; /* key scale rate */ + UINT8 ksl; /* keyscale level */ + UINT8 ksr; /* key scale rate: kcode>>KSR */ + UINT8 mul; /* multiple: mul_tab[ML] */ + + /* Phase Generator */ + UINT32 Cnt; /* frequency counter */ + UINT32 Incr; /* frequency counter step */ + UINT8 FB; /* feedback shift value */ + INT32 *connect; /* slot output pointer */ + INT32 op1_out[2]; /* slot1 output for feedback */ + UINT8 CON; /* connection (algorithm) type */ + + /* Envelope Generator */ + UINT8 eg_type; /* percussive/non-percussive mode */ + UINT8 state; /* phase type */ + UINT32 TL; /* total level: TL << 2 */ + INT32 TLL; /* adjusted now TL */ + INT32 volume; /* envelope counter */ + UINT32 sl; /* sustain level: sl_tab[SL] */ + + UINT32 eg_m_ar; /* (attack state) */ + UINT8 eg_sh_ar; /* (attack state) */ + UINT8 eg_sel_ar; /* (attack state) */ + UINT32 eg_m_dr; /* (decay state) */ + UINT8 eg_sh_dr; /* (decay state) */ + UINT8 eg_sel_dr; /* (decay state) */ + UINT32 eg_m_rr; /* (release state) */ + UINT8 eg_sh_rr; /* (release state) */ + UINT8 eg_sel_rr; /* (release state) */ + + UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */ + + /* LFO */ + UINT32 AMmask; /* LFO Amplitude Modulation enable mask */ + UINT8 vib; /* LFO Phase Modulation enable flag (active high)*/ + + /* waveform select */ + UINT8 waveform_number; + unsigned int wavetable; + +//unsigned char reserved[128-84];//speedup: pump up the struct size to power of 2 +unsigned char reserved[128-100];//speedup: pump up the struct size to power of 2 + +} OPL3_SLOT; + +typedef struct{ + OPL3_SLOT SLOT[2]; + + UINT32 block_fnum; /* block+fnum */ + UINT32 fc; /* Freq. Increment base */ + UINT32 ksl_base; /* KeyScaleLevel Base step */ + UINT8 kcode; /* key code (for key scaling) */ + + /* + there are 12 2-operator channels which can be combined in pairs + to form six 4-operator channel, they are: + 0 and 3, + 1 and 4, + 2 and 5, + 9 and 12, + 10 and 13, + 11 and 14 + */ + UINT8 extended; /* set to 1 if this channel forms up a 4op channel with another channel(only used by first of pair of channels, ie 0,1,2 and 9,10,11) */ + +unsigned char reserved[512-272];//speedup:pump up the struct size to power of 2 + +} OPL3_CH; + +/* OPL3 state */ +typedef struct { + OPL3_CH P_CH[18]; /* OPL3 chips have 18 channels */ + + UINT32 pan[18*4]; /* channels output masks (0xffffffff = enable); 4 masks per one channel */ + UINT32 pan_ctrl_value[18]; /* output control values 1 per one channel (1 value contains 4 masks) */ + + UINT32 eg_cnt; /* global envelope generator counter */ + UINT32 eg_timer; /* global envelope generator counter works at frequency = chipclock/288 (288=8*36) */ + UINT32 eg_timer_add; /* step of eg_timer */ + UINT32 eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */ + + UINT32 fn_tab[1024]; /* fnumber->increment counter */ + + /* LFO */ + UINT8 lfo_am_depth; + UINT8 lfo_pm_depth_range; + UINT32 lfo_am_cnt; + UINT32 lfo_am_inc; + UINT32 lfo_pm_cnt; + UINT32 lfo_pm_inc; + + UINT32 noise_rng; /* 23 bit noise shift register */ + UINT32 noise_p; /* current noise 'phase' */ + UINT32 noise_f; /* current noise period */ + + UINT8 OPL3_mode; /* OPL3 extension enable flag */ + + UINT8 rhythm; /* Rhythm mode */ + + int T[2]; /* timer counters */ + UINT8 st[2]; /* timer enable */ + + UINT32 address; /* address register */ + UINT8 status; /* status flag */ + UINT8 statusmask; /* status mask */ + + UINT8 nts; /* NTS (note select) */ + + /* external event callback handlers */ + OPL3_TIMERHANDLER TimerHandler;/* TIMER handler */ + int TimerParam; /* TIMER parameter */ + OPL3_IRQHANDLER IRQHandler; /* IRQ handler */ + int IRQParam; /* IRQ parameter */ + OPL3_UPDATEHANDLER UpdateHandler;/* stream update handler */ + int UpdateParam; /* stream update parameter */ + + UINT8 type; /* chip type */ + int clock; /* master clock (Hz) */ + int rate; /* sampling rate (Hz) */ + double freqbase; /* frequency base */ + double TimerBase; /* Timer base time (==sampling time)*/ +} OPL3; + + + +/* mapping of register number (offset) to slot number used by the emulator */ +static const int slot_array[32]= +{ + 0, 2, 4, 1, 3, 5,-1,-1, + 6, 8,10, 7, 9,11,-1,-1, + 12,14,16,13,15,17,-1,-1, + -1,-1,-1,-1,-1,-1,-1,-1 +}; + +/* key scale level */ +/* table is 3dB/octave , DV converts this into 6dB/octave */ +/* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ +#define DV (0.1875/2.0) +static const UINT32 ksl_tab[8*16]= +{ + /* OCT 0 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + /* OCT 1 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, + 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, + /* OCT 2 */ + 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, + 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, + 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, + 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, + /* OCT 3 */ + 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, + 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, + 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, + 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, + /* OCT 4 */ + 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, + 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, + 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, + 10.875/DV,11.250/DV,11.625/DV,12.000/DV, + /* OCT 5 */ + 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, + 9.000/DV,10.125/DV,10.875/DV,11.625/DV, + 12.000/DV,12.750/DV,13.125/DV,13.500/DV, + 13.875/DV,14.250/DV,14.625/DV,15.000/DV, + /* OCT 6 */ + 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, + 12.000/DV,13.125/DV,13.875/DV,14.625/DV, + 15.000/DV,15.750/DV,16.125/DV,16.500/DV, + 16.875/DV,17.250/DV,17.625/DV,18.000/DV, + /* OCT 7 */ + 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, + 15.000/DV,16.125/DV,16.875/DV,17.625/DV, + 18.000/DV,18.750/DV,19.125/DV,19.500/DV, + 19.875/DV,20.250/DV,20.625/DV,21.000/DV +}; +#undef DV + +/* sustain level table (3dB per step) */ +/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ +#define SC(db) (UINT32) ( db * (2.0/ENV_STEP) ) +static const UINT32 sl_tab[16]={ + SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), + SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) +}; +#undef SC + + +#define RATE_STEPS (8) +static const unsigned char eg_inc[15*RATE_STEPS]={ + +/*cycle:0 1 2 3 4 5 6 7*/ + +/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ +/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ +/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ +/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ + +/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ +/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ +/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ +/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ + +/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ +/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ +/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ +/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ + +/*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 for decay */ +/*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 for attack (zero time) */ +/*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ +}; + + +#define O(a) (a*RATE_STEPS) + +/* note that there is no O(13) in this table - it's directly in the code */ +static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ +/* 16 infinite time rates */ +O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), +O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), + +/* rates 00-12 */ +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), +O( 0),O( 1),O( 2),O( 3), + +/* rate 13 */ +O( 4),O( 5),O( 6),O( 7), + +/* rate 14 */ +O( 8),O( 9),O(10),O(11), + +/* rate 15 */ +O(12),O(12),O(12),O(12), + +/* 16 dummy rates (same as 15 3) */ +O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), +O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), + +}; +#undef O + +/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ +/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ +/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ + +#define O(a) (a*1) +static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ +/* 16 infinite time rates */ +O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), +O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), + +/* rates 00-12 */ +O(12),O(12),O(12),O(12), +O(11),O(11),O(11),O(11), +O(10),O(10),O(10),O(10), +O( 9),O( 9),O( 9),O( 9), +O( 8),O( 8),O( 8),O( 8), +O( 7),O( 7),O( 7),O( 7), +O( 6),O( 6),O( 6),O( 6), +O( 5),O( 5),O( 5),O( 5), +O( 4),O( 4),O( 4),O( 4), +O( 3),O( 3),O( 3),O( 3), +O( 2),O( 2),O( 2),O( 2), +O( 1),O( 1),O( 1),O( 1), +O( 0),O( 0),O( 0),O( 0), + +/* rate 13 */ +O( 0),O( 0),O( 0),O( 0), + +/* rate 14 */ +O( 0),O( 0),O( 0),O( 0), + +/* rate 15 */ +O( 0),O( 0),O( 0),O( 0), + +/* 16 dummy rates (same as 15 3) */ +O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), +O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), + +}; +#undef O + + +/* multiple table */ +#define ML 2 +static const UINT8 mul_tab[16]= { +/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ + 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, + 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML +}; +#undef ML + +/* TL_TAB_LEN is calculated as: + +* (12+1)=13 - sinus amplitude bits (Y axis) +* additional 1: to compensate for calculations of negative part of waveform +* (if we don't add it then the greatest possible _negative_ value would be -2 +* and we really need -1 for waveform #7) +* 2 - sinus sign bit (Y axis) +* TL_RES_LEN - sinus resolution (X axis) +*/ +#define TL_TAB_LEN (13*2*TL_RES_LEN) +static signed int tl_tab[TL_TAB_LEN]; + +#define ENV_QUIET (TL_TAB_LEN>>4) + +/* sin waveform table in 'decibel' scale */ +/* there are eight waveforms on OPL3 chips */ +static unsigned int sin_tab[SIN_LEN * 8]; + + +/* LFO Amplitude Modulation table (verified on real YM3812) + 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples + + Length: 210 elements. + + Each of the elements has to be repeated + exactly 64 times (on 64 consecutive samples). + The whole table takes: 64 * 210 = 13440 samples. + + When AM = 1 data is used directly + When AM = 0 data is divided by 4 before being used (loosing precision is important) +*/ + +#define LFO_AM_TAB_ELEMENTS 210 + +static const UINT8 lfo_am_table[LFO_AM_TAB_ELEMENTS] = { +0,0,0,0,0,0,0, +1,1,1,1, +2,2,2,2, +3,3,3,3, +4,4,4,4, +5,5,5,5, +6,6,6,6, +7,7,7,7, +8,8,8,8, +9,9,9,9, +10,10,10,10, +11,11,11,11, +12,12,12,12, +13,13,13,13, +14,14,14,14, +15,15,15,15, +16,16,16,16, +17,17,17,17, +18,18,18,18, +19,19,19,19, +20,20,20,20, +21,21,21,21, +22,22,22,22, +23,23,23,23, +24,24,24,24, +25,25,25,25, +26,26,26, +25,25,25,25, +24,24,24,24, +23,23,23,23, +22,22,22,22, +21,21,21,21, +20,20,20,20, +19,19,19,19, +18,18,18,18, +17,17,17,17, +16,16,16,16, +15,15,15,15, +14,14,14,14, +13,13,13,13, +12,12,12,12, +11,11,11,11, +10,10,10,10, +9,9,9,9, +8,8,8,8, +7,7,7,7, +6,6,6,6, +5,5,5,5, +4,4,4,4, +3,3,3,3, +2,2,2,2, +1,1,1,1 +}; + +/* LFO Phase Modulation table (verified on real YM3812) */ +static const INT8 lfo_pm_table[8*8*2] = { + +/* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ +0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ +1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ +4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ +2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ +5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ +6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ + +/* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ +3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ +7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ +}; + + +/* lock level of common table */ +static int num_lock = 0; + +/* work table */ +static void *cur_chip = NULL; /* current chip point */ +static OPL3_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; + +static signed int phase_modulation; /* phase modulation input (SLOT 2) */ +static signed int phase_modulation2; /* phase modulation input (SLOT 3 in 4 operator channels) */ +static signed int chanout[18]; /* 18 channels */ + + +static UINT32 LFO_AM; +static INT32 LFO_PM; + + + +INLINE int limit( int val, int max, int min ) { + if ( val > max ) + val = max; + else if ( val < min ) + val = min; + + return val; +} + + +/* status set and IRQ handling */ +INLINE void OPL3_STATUS_SET(OPL3 *chip,int flag) +{ + /* set status flag masking out disabled IRQs */ + chip->status |= (flag & chip->statusmask); + if(!(chip->status & 0x80)) + { + if(chip->status & 0x7f) + { /* IRQ on */ + chip->status |= 0x80; + /* callback user interrupt handler (IRQ is OFF to ON) */ + if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,1); + } + } +} + +/* status reset and IRQ handling */ +INLINE void OPL3_STATUS_RESET(OPL3 *chip,int flag) +{ + /* reset status flag */ + chip->status &= ~flag; + if(chip->status & 0x80) + { + if (!(chip->status & 0x7f)) + { + chip->status &= 0x7f; + /* callback user interrupt handler (IRQ is ON to OFF) */ + if(chip->IRQHandler) (chip->IRQHandler)(chip->IRQParam,0); + } + } +} + +/* IRQ mask set */ +INLINE void OPL3_STATUSMASK_SET(OPL3 *chip,int flag) +{ + chip->statusmask = flag; + /* IRQ handling check */ + OPL3_STATUS_SET(chip,0); + OPL3_STATUS_RESET(chip,0); +} + + +/* advance LFO to next sample */ +INLINE void advance_lfo(OPL3 *chip) +{ + UINT8 tmp; + + /* LFO */ + chip->lfo_am_cnt += chip->lfo_am_inc; + if (chip->lfo_am_cnt >= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt -= (LFO_AM_TAB_ELEMENTS<lfo_am_cnt >> LFO_SH ]; + + if (chip->lfo_am_depth) + LFO_AM = tmp; + else + LFO_AM = tmp>>2; + + chip->lfo_pm_cnt += chip->lfo_pm_inc; + LFO_PM = ((chip->lfo_pm_cnt>>LFO_SH) & 7) | chip->lfo_pm_depth_range; +} + +/* advance to next sample */ +INLINE void advance(OPL3 *chip) +{ + OPL3_CH *CH; + OPL3_SLOT *op; + int i; + +//profiler_mark(PROFILER_USER3); + chip->eg_timer += chip->eg_timer_add; + + while (chip->eg_timer >= chip->eg_timer_overflow) + { + chip->eg_timer -= chip->eg_timer_overflow; + + chip->eg_cnt++; + + for (i=0; i<9*2*2; i++) + { + CH = &chip->P_CH[i/2]; + op = &CH->SLOT[i&1]; +#if 1 + /* Envelope Generator */ + switch(op->state) + { + case EG_ATT: /* attack phase */ +// if ( !(chip->eg_cnt & ((1<eg_sh_ar)-1) ) ) + if ( !(chip->eg_cnt & op->eg_m_ar) ) + { + op->volume += (~op->volume * + (eg_inc[op->eg_sel_ar + ((chip->eg_cnt>>op->eg_sh_ar)&7)]) + ) >>3; + + if (op->volume <= MIN_ATT_INDEX) + { + op->volume = MIN_ATT_INDEX; + op->state = EG_DEC; + } + + } + break; + + case EG_DEC: /* decay phase */ +// if ( !(chip->eg_cnt & ((1<eg_sh_dr)-1) ) ) + if ( !(chip->eg_cnt & op->eg_m_dr) ) + { + op->volume += eg_inc[op->eg_sel_dr + ((chip->eg_cnt>>op->eg_sh_dr)&7)]; + + if ( op->volume >= op->sl ) + op->state = EG_SUS; + + } + break; + + case EG_SUS: /* sustain phase */ + + /* this is important behaviour: + one can change percusive/non-percussive modes on the fly and + the chip will remain in sustain phase - verified on real YM3812 */ + + if(op->eg_type) /* non-percussive mode */ + { + /* do nothing */ + } + else /* percussive mode */ + { + /* during sustain phase chip adds Release Rate (in percussive mode) */ +// if ( !(chip->eg_cnt & ((1<eg_sh_rr)-1) ) ) + if ( !(chip->eg_cnt & op->eg_m_rr) ) + { + op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)]; + + if ( op->volume >= MAX_ATT_INDEX ) + op->volume = MAX_ATT_INDEX; + } + /* else do nothing in sustain phase */ + } + break; + + case EG_REL: /* release phase */ +// if ( !(chip->eg_cnt & ((1<eg_sh_rr)-1) ) ) + if ( !(chip->eg_cnt & op->eg_m_rr) ) + { + op->volume += eg_inc[op->eg_sel_rr + ((chip->eg_cnt>>op->eg_sh_rr)&7)]; + + if ( op->volume >= MAX_ATT_INDEX ) + { + op->volume = MAX_ATT_INDEX; + op->state = EG_OFF; + } + + } + break; + + default: + break; + } +#endif + } + } +//profiler_mark(PROFILER_END); + +//profiler_mark(PROFILER_USER4); + for (i=0; i<9*2*2; i++) + { + CH = &chip->P_CH[i/2]; + op = &CH->SLOT[i&1]; + + /* Phase Generator */ + if(op->vib) + { + UINT8 block; + unsigned int block_fnum = CH->block_fnum; + + unsigned int fnum_lfo = (block_fnum&0x0380) >> 7; + + signed int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo ]; + + if (lfo_fn_table_index_offset) /* LFO phase modulation active */ + { + block_fnum += lfo_fn_table_index_offset; + block = (block_fnum&0x1c00) >> 10; + op->Cnt += (chip->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; + } + else /* LFO phase modulation = zero */ + { + op->Cnt += op->Incr; + } + } + else /* LFO phase modulation disabled for this operator */ + { + op->Cnt += op->Incr; + } + } +//profiler_mark(PROFILER_END); + + /* The Noise Generator of the YM3812 is 23-bit shift register. + * Period is equal to 2^23-2 samples. + * Register works at sampling frequency of the chip, so output + * can change on every sample. + * + * Output of the register and input to the bit 22 is: + * bit0 XOR bit14 XOR bit15 XOR bit22 + * + * Simply use bit 22 as the noise output. + */ + + chip->noise_p += chip->noise_f; + i = chip->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */ + chip->noise_p &= FREQ_MASK; + while (i) + { + /* + UINT32 j; + j = ( (chip->noise_rng) ^ (chip->noise_rng>>14) ^ (chip->noise_rng>>15) ^ (chip->noise_rng>>22) ) & 1; + chip->noise_rng = (j<<22) | (chip->noise_rng>>1); + */ + + /* + Instead of doing all the logic operations above, we + use a trick here (and use bit 0 as the noise output). + The difference is only that the noise bit changes one + step ahead. This doesn't matter since we don't know + what is real state of the noise_rng after the reset. + */ + + if (chip->noise_rng & 1) chip->noise_rng ^= 0x800302; + chip->noise_rng >>= 1; + + i--; + } +} + + +INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) +{ + UINT32 p; + + p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ]; + + if (p >= TL_TAB_LEN) + return 0; + return tl_tab[p]; +} + +INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab) +{ + UINT32 p; + + p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm))>>FREQ_SH) & SIN_MASK)]; + + if (p >= TL_TAB_LEN) + return 0; + return tl_tab[p]; +} + + +#define volume_calc(OP) ((OP)->TLL + ((UINT32)(OP)->volume) + (LFO_AM & (OP)->AMmask)) + +/* calculate output of a standard 2 operator channel + (or 1st part of a 4-op channel) */ +INLINE void chan_calc( OPL3_CH *CH ) +{ + OPL3_SLOT *SLOT; + unsigned int env; + signed int out; + + phase_modulation = 0; + phase_modulation2= 0; + + /* SLOT 1 */ + SLOT = &CH->SLOT[SLOT1]; + env = volume_calc(SLOT); + out = SLOT->op1_out[0] + SLOT->op1_out[1]; + SLOT->op1_out[0] = SLOT->op1_out[1]; + SLOT->op1_out[1] = 0; + if( env < ENV_QUIET ) + { + if (!SLOT->FB) + out = 0; + SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); + } + *SLOT->connect += SLOT->op1_out[1]; +//logerror("out0=%5i vol0=%4i ", SLOT->op1_out[1], env ); + + /* SLOT 2 */ + SLOT++; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); + +//logerror("out1=%5i vol1=%4i\n", op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable), env ); + +} + +/* calculate output of a 2nd part of 4-op channel */ +INLINE void chan_calc_ext( OPL3_CH *CH ) +{ + OPL3_SLOT *SLOT; + unsigned int env; + + phase_modulation = 0; + + /* SLOT 1 */ + SLOT = &CH->SLOT[SLOT1]; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation2, SLOT->wavetable ); + + /* SLOT 2 */ + SLOT++; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); + +} + +/* + operators used in the rhythm sounds generation process: + + Envelope Generator: + +channel operator register number Bass High Snare Tom Top +/ slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal + 6 / 0 12 50 70 90 f0 + + 6 / 1 15 53 73 93 f3 + + 7 / 0 13 51 71 91 f1 + + 7 / 1 16 54 74 94 f4 + + 8 / 0 14 52 72 92 f2 + + 8 / 1 17 55 75 95 f5 + + + Phase Generator: + +channel operator register number Bass High Snare Tom Top +/ slot number MULTIPLE Drum Hat Drum Tom Cymbal + 6 / 0 12 30 + + 6 / 1 15 33 + + 7 / 0 13 31 + + + + 7 / 1 16 34 ----- n o t u s e d ----- + 8 / 0 14 32 + + 8 / 1 17 35 + + + +channel operator register number Bass High Snare Tom Top +number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal + 6 12,15 B6 A6 + + + 7 13,16 B7 A7 + + + + + 8 14,17 B8 A8 + + + + +*/ + +/* calculate rhythm */ + +INLINE void chan_calc_rhythm( OPL3_CH *CH, unsigned int noise ) +{ + OPL3_SLOT *SLOT; + signed int out; + unsigned int env; + + + /* Bass Drum (verified on real YM3812): + - depends on the channel 6 'connect' register: + when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out) + when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored + - output sample always is multiplied by 2 + */ + + phase_modulation = 0; + + /* SLOT 1 */ + SLOT = &CH[6].SLOT[SLOT1]; + env = volume_calc(SLOT); + + out = SLOT->op1_out[0] + SLOT->op1_out[1]; + SLOT->op1_out[0] = SLOT->op1_out[1]; + + if (!SLOT->CON) + phase_modulation = SLOT->op1_out[0]; + //else ignore output of operator 1 + + SLOT->op1_out[1] = 0; + if( env < ENV_QUIET ) + { + if (!SLOT->FB) + out = 0; + SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<FB), SLOT->wavetable ); + } + + /* SLOT 2 */ + SLOT++; + env = volume_calc(SLOT); + if( env < ENV_QUIET ) + chanout[6] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2; + + + /* Phase generation is based on: */ + // HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) + // SD (16) channel 7->slot 1 + // TOM (14) channel 8->slot 1 + // TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) + + /* Envelope generation based on: */ + // HH channel 7->slot1 + // SD channel 7->slot2 + // TOM channel 8->slot1 + // TOP channel 8->slot2 + + + /* The following formulas can be well optimized. + I leave them in direct form for now (in case I've missed something). + */ + + /* High Hat (verified on real YM3812) */ + env = volume_calc(SLOT7_1); + if( env < ENV_QUIET ) + { + + /* high hat phase generation: + phase = d0 or 234 (based on frequency only) + phase = 34 or 2d0 (based on noise) + */ + + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; + unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; + unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; + + unsigned char res1 = (bit2 ^ bit7) | bit3; + + /* when res1 = 0 phase = 0x000 | 0xd0; */ + /* when res1 = 1 phase = 0x200 | (0xd0>>2); */ + UINT32 phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; + + /* enable gate based on frequency of operator 2 in channel 8 */ + unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; + unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; + + unsigned char res2 = (bit3e ^ bit5e); + + /* when res2 = 0 pass the phase from calculation above (res1); */ + /* when res2 = 1 phase = 0x200 | (0xd0>>2); */ + if (res2) + phase = (0x200|(0xd0>>2)); + + + /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ + /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ + if (phase&0x200) + { + if (noise) + phase = 0x200|0xd0; + } + else + /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */ + /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */ + { + if (noise) + phase = 0xd0>>2; + } + + chanout[7] += op_calc(phase<wavetable) * 2; + } + + /* Snare Drum (verified on real YM3812) */ + env = volume_calc(SLOT7_2); + if( env < ENV_QUIET ) + { + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; + + /* when bit8 = 0 phase = 0x100; */ + /* when bit8 = 1 phase = 0x200; */ + UINT32 phase = bit8 ? 0x200 : 0x100; + + /* Noise bit XOR'es phase by 0x100 */ + /* when noisebit = 0 pass the phase from calculation above */ + /* when noisebit = 1 phase ^= 0x100; */ + /* in other words: phase ^= (noisebit<<8); */ + if (noise) + phase ^= 0x100; + + chanout[7] += op_calc(phase<wavetable) * 2; + } + + /* Tom Tom (verified on real YM3812) */ + env = volume_calc(SLOT8_1); + if( env < ENV_QUIET ) + chanout[8] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; + + /* Top Cymbal (verified on real YM3812) */ + env = volume_calc(SLOT8_2); + if( env < ENV_QUIET ) + { + /* base frequency derived from operator 1 in channel 7 */ + unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; + unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; + unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; + + unsigned char res1 = (bit2 ^ bit7) | bit3; + + /* when res1 = 0 phase = 0x000 | 0x100; */ + /* when res1 = 1 phase = 0x200 | 0x100; */ + UINT32 phase = res1 ? 0x300 : 0x100; + + /* enable gate based on frequency of operator 2 in channel 8 */ + unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; + unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; + + unsigned char res2 = (bit3e ^ bit5e); + /* when res2 = 0 pass the phase from calculation above (res1); */ + /* when res2 = 1 phase = 0x200 | 0x100; */ + if (res2) + phase = 0x300; + + chanout[8] += op_calc(phase<wavetable) * 2; + } + +} + + +/* generic table initialize */ +static int init_tables(void) +{ + signed int i,x; + signed int n; + double o,m; + + + for (x=0; x>= 4; /* 12 bits here */ + if (n&1) /* round to nearest */ + n = (n>>1)+1; + else + n = n>>1; + /* 11 bits here (rounded) */ + n <<= 1; /* 12 bits here (as in real chip) */ + tl_tab[ x*2 + 0 ] = n; + tl_tab[ x*2 + 1 ] = ~tl_tab[ x*2 + 0 ]; /* this *is* different from OPL2 (verified on real YMF262) */ + + for (i=1; i<13; i++) + { + tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; + tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = ~tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; /* this *is* different from OPL2 (verified on real YMF262) */ + } + #if 0 + logerror("tl %04i", x*2); + for (i=0; i<13; i++) + logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +0 + i*2*TL_RES_LEN ] ); /* positive */ + logerror("\n"); + + logerror("tl %04i", x*2); + for (i=0; i<13; i++) + logerror(", [%02i] %5i", i*2, tl_tab[ x*2 +1 + i*2*TL_RES_LEN ] ); /* negative */ + logerror("\n"); + #endif + } + + for (i=0; i0.0) + o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */ + else + o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */ + + o = o / (ENV_STEP/4); + + n = (int)(2.0*o); + if (n&1) /* round to nearest */ + n = (n>>1)+1; + else + n = n>>1; + + sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); + + /*logerror("YMF262.C: sin [%4i (hex=%03x)]= %4i (tl_tab value=%5i)\n", i, i, sin_tab[i], tl_tab[sin_tab[i]] );*/ + } + + for (i=0; i>1) ]; + + /* waveform 3: _ _ _ _ */ + /* / |_/ |_/ |_/ |_*/ + /* abs(output only first quarter of the sinus waveform) */ + + if (i & (1<<(SIN_BITS-2)) ) + sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; + else + sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; + + /* waveform 4: */ + /* /\ ____/\ ____*/ + /* \/ \/ */ + /* output whole sinus waveform in half the cycle(step=2) and output 0 on the other half of cycle */ + + if (i & (1<<(SIN_BITS-1)) ) + sin_tab[4*SIN_LEN+i] = TL_TAB_LEN; + else + sin_tab[4*SIN_LEN+i] = sin_tab[i*2]; + + /* waveform 5: */ + /* /\/\____/\/\____*/ + /* */ + /* output abs(whole sinus) waveform in half the cycle(step=2) and output 0 on the other half of cycle */ + + if (i & (1<<(SIN_BITS-1)) ) + sin_tab[5*SIN_LEN+i] = TL_TAB_LEN; + else + sin_tab[5*SIN_LEN+i] = sin_tab[(i*2) & (SIN_MASK>>1) ]; + + /* waveform 6: ____ ____ */ + /* */ + /* ____ ____*/ + /* output maximum in half the cycle and output minimum on the other half of cycle */ + + if (i & (1<<(SIN_BITS-1)) ) + sin_tab[6*SIN_LEN+i] = 1; /* negative */ + else + sin_tab[6*SIN_LEN+i] = 0; /* positive */ + + /* waveform 7: */ + /* |\____ |\____ */ + /* \| \|*/ + /* output sawtooth waveform */ + + if (i & (1<<(SIN_BITS-1)) ) + x = ((SIN_LEN-1)-i)*16 + 1; /* negative: from 8177 to 1 */ + else + x = i*16; /*positive: from 0 to 8176 */ + + if (x > TL_TAB_LEN) + x = TL_TAB_LEN; /* clip to the allowed range */ + + sin_tab[7*SIN_LEN+i] = x; + + //logerror("YMF262.C: sin1[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[1*SIN_LEN+i], tl_tab[sin_tab[1*SIN_LEN+i]] ); + //logerror("YMF262.C: sin2[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[2*SIN_LEN+i], tl_tab[sin_tab[2*SIN_LEN+i]] ); + //logerror("YMF262.C: sin3[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[3*SIN_LEN+i], tl_tab[sin_tab[3*SIN_LEN+i]] ); + //logerror("YMF262.C: sin4[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[4*SIN_LEN+i], tl_tab[sin_tab[4*SIN_LEN+i]] ); + //logerror("YMF262.C: sin5[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[5*SIN_LEN+i], tl_tab[sin_tab[5*SIN_LEN+i]] ); + //logerror("YMF262.C: sin6[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[6*SIN_LEN+i], tl_tab[sin_tab[6*SIN_LEN+i]] ); + //logerror("YMF262.C: sin7[%4i]= %4i (tl_tab value=%5i)\n", i, sin_tab[7*SIN_LEN+i], tl_tab[sin_tab[7*SIN_LEN+i]] ); + } + /*logerror("YMF262.C: ENV_QUIET= %08x (dec*8=%i)\n", ENV_QUIET, ENV_QUIET*8 );*/ + +#ifdef SAVE_SAMPLE + sample[0]=fopen("sampsum.pcm","wb"); +#endif + + return 1; +} + +static void OPLCloseTable( void ) +{ +#ifdef SAVE_SAMPLE + fclose(sample[0]); +#endif +} + + + +static void OPL3_initalize(OPL3 *chip) +{ + int i; + + /* frequency base */ + chip->freqbase = (chip->rate) ? ((double)chip->clock / (8.0*36)) / chip->rate : 0; +#if 0 + chip->rate = (double)chip->clock / (8.0*36); + chip->freqbase = 1.0; +#endif + + /* logerror("YMF262: freqbase=%f\n", chip->freqbase); */ + + /* Timer base time */ + chip->TimerBase = 1.0 / ((double)chip->clock / (8.0*36) ); + + /* make fnumber -> increment counter table */ + for( i=0 ; i < 1024 ; i++ ) + { + /* opn phase increment counter = 20bit */ + chip->fn_tab[i] = (UINT32)( (double)i * 64 * chip->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ +#if 0 + logerror("YMF262.C: fn_tab[%4i] = %08x (dec=%8i)\n", + i, chip->fn_tab[i]>>6, chip->fn_tab[i]>>6 ); +#endif + } + +#if 0 + for( i=0 ; i < 16 ; i++ ) + { + logerror("YMF262.C: sl_tab[%i] = %08x\n", + i, sl_tab[i] ); + } + for( i=0 ; i < 8 ; i++ ) + { + int j; + logerror("YMF262.C: ksl_tab[oct=%2i] =",i); + for (j=0; j<16; j++) + { + logerror("%08x ", ksl_tab[i*16+j] ); + } + logerror("\n"); + } +#endif + + + /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */ + /* One entry from LFO_AM_TABLE lasts for 64 samples */ + chip->lfo_am_inc = (1.0 / 64.0 ) * (1<freqbase; + + /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */ + chip->lfo_pm_inc = (1.0 / 1024.0) * (1<freqbase; + + /*logerror ("chip->lfo_am_inc = %8x ; chip->lfo_pm_inc = %8x\n", chip->lfo_am_inc, chip->lfo_pm_inc);*/ + + /* Noise generator: a step takes 1 sample */ + chip->noise_f = (1.0 / 1.0) * (1<freqbase; + + chip->eg_timer_add = (1<freqbase; + chip->eg_timer_overflow = ( 1 ) * (1<eg_timer_add, chip->eg_timer_overflow);*/ + +} + +INLINE void FM_KEYON(OPL3_SLOT *SLOT, UINT32 key_set) +{ + if( !SLOT->key ) + { + /* restart Phase Generator */ + SLOT->Cnt = 0; + /* phase -> Attack */ + SLOT->state = EG_ATT; + } + SLOT->key |= key_set; +} + +INLINE void FM_KEYOFF(OPL3_SLOT *SLOT, UINT32 key_clr) +{ + if( SLOT->key ) + { + SLOT->key &= key_clr; + + if( !SLOT->key ) + { + /* phase -> Release */ + if (SLOT->state>EG_REL) + SLOT->state = EG_REL; + } + } +} + +/* update phase increment counter of operator (also update the EG rates if necessary) */ +INLINE void CALC_FCSLOT(OPL3_CH *CH,OPL3_SLOT *SLOT) +{ + int ksr; + + /* (frequency) phase increment counter */ + SLOT->Incr = CH->fc * SLOT->mul; + ksr = CH->kcode >> SLOT->KSR; + + if( SLOT->ksr != ksr ) + { + SLOT->ksr = ksr; + + /* calculate envelope generator rates */ + if ((SLOT->ar + SLOT->ksr) < 16+60) + { + SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; + SLOT->eg_m_ar = (1<eg_sh_ar)-1; + SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; + } + else + { + SLOT->eg_sh_ar = 0; + SLOT->eg_m_ar = (1<eg_sh_ar)-1; + SLOT->eg_sel_ar = 13*RATE_STEPS; + } + SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; + SLOT->eg_m_dr = (1<eg_sh_dr)-1; + SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; + SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; + SLOT->eg_m_rr = (1<eg_sh_rr)-1; + SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; + } +} + +/* set multi,am,vib,EG-TYP,KSR,mul */ +INLINE void set_mul(OPL3 *chip,int slot,int v) +{ + OPL3_CH *CH = &chip->P_CH[slot/2]; + OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->mul = mul_tab[v&0x0f]; + SLOT->KSR = (v&0x10) ? 0 : 2; + SLOT->eg_type = (v&0x20); + SLOT->vib = (v&0x40); + SLOT->AMmask = (v&0x80) ? ~0 : 0; + + if (chip->OPL3_mode & 1) + { + int chan_no = slot/2; + + /* in OPL3 mode */ + //DO THIS: + //if this is one of the slots of 1st channel forming up a 4-op channel + //do normal operation + //else normal 2 operator function + //OR THIS: + //if this is one of the slots of 2nd channel forming up a 4-op channel + //update it using channel data of 1st channel of a pair + //else normal 2 operator function + switch(chan_no) + { + case 0: case 1: case 2: + case 9: case 10: case 11: + if (CH->extended) + { + /* normal */ + CALC_FCSLOT(CH,SLOT); + } + else + { + /* normal */ + CALC_FCSLOT(CH,SLOT); + } + break; + case 3: case 4: case 5: + case 12: case 13: case 14: + if ((CH-3)->extended) + { + /* update this SLOT using frequency data for 1st channel of a pair */ + CALC_FCSLOT(CH-3,SLOT); + } + else + { + /* normal */ + CALC_FCSLOT(CH,SLOT); + } + break; + default: + /* normal */ + CALC_FCSLOT(CH,SLOT); + break; + } + } + else + { + /* in OPL2 mode */ + CALC_FCSLOT(CH,SLOT); + } +} + +/* set ksl & tl */ +INLINE void set_ksl_tl(OPL3 *chip,int slot,int v) +{ + OPL3_CH *CH = &chip->P_CH[slot/2]; + OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; + + int ksl = v>>6; /* 0 / 1.5 / 3.0 / 6.0 dB/OCT */ + + SLOT->ksl = ksl ? 3-ksl : 31; + SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ + + if (chip->OPL3_mode & 1) + { + int chan_no = slot/2; + + /* in OPL3 mode */ + //DO THIS: + //if this is one of the slots of 1st channel forming up a 4-op channel + //do normal operation + //else normal 2 operator function + //OR THIS: + //if this is one of the slots of 2nd channel forming up a 4-op channel + //update it using channel data of 1st channel of a pair + //else normal 2 operator function + switch(chan_no) + { + case 0: case 1: case 2: + case 9: case 10: case 11: + if (CH->extended) + { + /* normal */ + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); + } + else + { + /* normal */ + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); + } + break; + case 3: case 4: case 5: + case 12: case 13: case 14: + if ((CH-3)->extended) + { + /* update this SLOT using frequency data for 1st channel of a pair */ + SLOT->TLL = SLOT->TL + ((CH-3)->ksl_base>>SLOT->ksl); + } + else + { + /* normal */ + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); + } + break; + default: + /* normal */ + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); + break; + } + } + else + { + /* in OPL2 mode */ + SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); + } + +} + +/* set attack rate & decay rate */ +INLINE void set_ar_dr(OPL3 *chip,int slot,int v) +{ + OPL3_CH *CH = &chip->P_CH[slot/2]; + OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; + + if ((SLOT->ar + SLOT->ksr) < 16+60) /* verified on real YMF262 - all 15 x rates take "zero" time */ + { + SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; + SLOT->eg_m_ar = (1<eg_sh_ar)-1; + SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; + } + else + { + SLOT->eg_sh_ar = 0; + SLOT->eg_m_ar = (1<eg_sh_ar)-1; + SLOT->eg_sel_ar = 13*RATE_STEPS; + } + + SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; + SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; + SLOT->eg_m_dr = (1<eg_sh_dr)-1; + SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; +} + +/* set sustain level & release rate */ +INLINE void set_sl_rr(OPL3 *chip,int slot,int v) +{ + OPL3_CH *CH = &chip->P_CH[slot/2]; + OPL3_SLOT *SLOT = &CH->SLOT[slot&1]; + + SLOT->sl = sl_tab[ v>>4 ]; + + SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; + SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; + SLOT->eg_m_rr = (1<eg_sh_rr)-1; + SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; +} + + +static void update_channels(OPL3 *chip, OPL3_CH *CH) +{ + /* update channel passed as a parameter and a channel at CH+=3; */ + if (CH->extended) + { /* we've just switched to combined 4 operator mode */ + + } + else + { /* we've just switched to normal 2 operator mode */ + + } + +} + +/* write a value v to register r on OPL chip */ +static void OPL3WriteReg(OPL3 *chip, int r, int v) +{ + OPL3_CH *CH; + unsigned int ch_offset = 0; + int slot; + int block_fnum; + + + +#ifdef LOG_CYM_FILE + if ((cymfile) && ((r&255)!=0) && (r!=255) ) + { + if (r>0xff) + fputc( (unsigned char)0xff, cymfile );/*mark writes to second register set*/ + + fputc( (unsigned char)r&0xff, cymfile ); + fputc( (unsigned char)v, cymfile ); + } +#endif + + if(r&0x100) + { + switch(r) + { + case 0x101: /* test register */ + return; + break; + case 0x104: /* 6 channels enable */ + { + UINT8 prev; + + CH = &chip->P_CH[0]; /* channel 0 */ + prev = CH->extended; + CH->extended = (v>>0) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + CH++; /* channel 1 */ + prev = CH->extended; + CH->extended = (v>>1) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + CH++; /* channel 2 */ + prev = CH->extended; + CH->extended = (v>>2) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + + + CH = &chip->P_CH[9]; /* channel 9 */ + prev = CH->extended; + CH->extended = (v>>3) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + CH++; /* channel 10 */ + prev = CH->extended; + CH->extended = (v>>4) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + CH++; /* channel 11 */ + prev = CH->extended; + CH->extended = (v>>5) & 1; + if(prev != CH->extended) + update_channels(chip, CH); + + } + return; + break; + case 0x105: /* OPL3 extensions enable register */ + + chip->OPL3_mode = v&0x01; /* OPL3 mode when bit0=1 otherwise it is OPL2 mode */ + + /* following behaviour was tested on real YMF262, + switching OPL3/OPL2 modes on the fly: + - does not change the waveform previously selected (unless when ....) + - does not update CH.A, CH.B, CH.C and CH.D output selectors (registers c0-c8) (unless when ....) + - does not disable channels 9-17 on OPL3->OPL2 switch + - does not switch 4 operator channels back to 2 operator channels + */ + + return; + break; + + default: + if (r < 0x120) + logerror("YMF262: write to unknown register (set#2): %03x value=%02x\n",r,v); + break; + } + + ch_offset = 9; /* register page #2 starts from channel 9 (counting from 0) */ + } + + /* adjust bus to 8 bits */ + r &= 0xff; + v &= 0xff; + + + switch(r&0xe0) + { + case 0x00: /* 00-1f:control */ + switch(r&0x1f) + { + case 0x01: /* test register */ + break; + case 0x02: /* Timer 1 */ + chip->T[0] = (256-v)*4; + break; + case 0x03: /* Timer 2 */ + chip->T[1] = (256-v)*16; + break; + case 0x04: /* IRQ clear / mask and Timer enable */ + if(v&0x80) + { /* IRQ flags clear */ + OPL3_STATUS_RESET(chip,0x60); + } + else + { /* set IRQ mask ,timer enable */ + UINT8 st1 = v & 1; + UINT8 st2 = (v>>1) & 1; + + /* IRQRST,T1MSK,t2MSK,x,x,x,ST2,ST1 */ + OPL3_STATUS_RESET(chip, v & 0x60); + OPL3_STATUSMASK_SET(chip, (~v) & 0x60 ); + + /* timer 2 */ + if(chip->st[1] != st2) + { + double interval = st2 ? (double)chip->T[1]*chip->TimerBase : 0.0; + chip->st[1] = st2; + if (chip->TimerHandler) (chip->TimerHandler)(chip->TimerParam+1,interval); + } + /* timer 1 */ + if(chip->st[0] != st1) + { + double interval = st1 ? (double)chip->T[0]*chip->TimerBase : 0.0; + chip->st[0] = st1; + if (chip->TimerHandler) (chip->TimerHandler)(chip->TimerParam+0,interval); + } + } + break; + case 0x08: /* x,NTS,x,x, x,x,x,x */ + chip->nts = v; + break; + + default: + logerror("YMF262: write to unknown register: %02x value=%02x\n",r,v); + break; + } + break; + case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_mul(chip, slot + ch_offset*2, v); + break; + case 0x40: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_ksl_tl(chip, slot + ch_offset*2, v); + break; + case 0x60: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_ar_dr(chip, slot + ch_offset*2, v); + break; + case 0x80: + slot = slot_array[r&0x1f]; + if(slot < 0) return; + set_sl_rr(chip, slot + ch_offset*2, v); + break; + case 0xa0: + if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */ + { + if (ch_offset != 0) /* 0xbd register is present in set #1 only */ + return; + + chip->lfo_am_depth = v & 0x80; + chip->lfo_pm_depth_range = (v&0x40) ? 8 : 0; + + chip->rhythm = v&0x3f; + + if(chip->rhythm&0x20) + { + /* BD key on/off */ + if(v&0x10) + { + FM_KEYON (&chip->P_CH[6].SLOT[SLOT1], 2); + FM_KEYON (&chip->P_CH[6].SLOT[SLOT2], 2); + } + else + { + FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2); + FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2); + } + /* HH key on/off */ + if(v&0x01) FM_KEYON (&chip->P_CH[7].SLOT[SLOT1], 2); + else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2); + /* SD key on/off */ + if(v&0x08) FM_KEYON (&chip->P_CH[7].SLOT[SLOT2], 2); + else FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2); + /* TOM key on/off */ + if(v&0x04) FM_KEYON (&chip->P_CH[8].SLOT[SLOT1], 2); + else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2); + /* TOP-CY key on/off */ + if(v&0x02) FM_KEYON (&chip->P_CH[8].SLOT[SLOT2], 2); + else FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2); + } + else + { + /* BD key off */ + FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT1],~2); + FM_KEYOFF(&chip->P_CH[6].SLOT[SLOT2],~2); + /* HH key off */ + FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT1],~2); + /* SD key off */ + FM_KEYOFF(&chip->P_CH[7].SLOT[SLOT2],~2); + /* TOM key off */ + FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT1],~2); + /* TOP-CY off */ + FM_KEYOFF(&chip->P_CH[8].SLOT[SLOT2],~2); + } + return; + } + + /* keyon,block,fnum */ + if( (r&0x0f) > 8) return; + CH = &chip->P_CH[(r&0x0f) + ch_offset]; + + if(!(r&0x10)) + { /* a0-a8 */ + block_fnum = (CH->block_fnum&0x1f00) | v; + } + else + { /* b0-b8 */ + block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); + + if (chip->OPL3_mode & 1) + { + int chan_no = (r&0x0f) + ch_offset; + + /* in OPL3 mode */ + //DO THIS: + //if this is 1st channel forming up a 4-op channel + //ALSO keyon/off slots of 2nd channel forming up 4-op channel + //else normal 2 operator function keyon/off + //OR THIS: + //if this is 2nd channel forming up 4-op channel just do nothing + //else normal 2 operator function keyon/off + switch(chan_no) + { + case 0: case 1: case 2: + case 9: case 10: case 11: + if (CH->extended) + { + //if this is 1st channel forming up a 4-op channel + //ALSO keyon/off slots of 2nd channel forming up 4-op channel + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + FM_KEYON (&(CH+3)->SLOT[SLOT1], 1); + FM_KEYON (&(CH+3)->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + FM_KEYOFF(&(CH+3)->SLOT[SLOT1],~1); + FM_KEYOFF(&(CH+3)->SLOT[SLOT2],~1); + } + } + else + { + //else normal 2 operator function keyon/off + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + } + } + break; + + case 3: case 4: case 5: + case 12: case 13: case 14: + if ((CH-3)->extended) + { + //if this is 2nd channel forming up 4-op channel just do nothing + } + else + { + //else normal 2 operator function keyon/off + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + } + } + break; + + default: + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + } + break; + } + } + else + { + if(v&0x20) + { + FM_KEYON (&CH->SLOT[SLOT1], 1); + FM_KEYON (&CH->SLOT[SLOT2], 1); + } + else + { + FM_KEYOFF(&CH->SLOT[SLOT1],~1); + FM_KEYOFF(&CH->SLOT[SLOT2],~1); + } + } + } + /* update */ + if(CH->block_fnum != block_fnum) + { + UINT8 block = block_fnum >> 10; + + CH->block_fnum = block_fnum; + + CH->ksl_base = ksl_tab[block_fnum>>6]; + CH->fc = chip->fn_tab[block_fnum&0x03ff] >> (7-block); + + /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */ + CH->kcode = (CH->block_fnum&0x1c00)>>9; + + /* the info below is actually opposite to what is stated in the Manuals (verifed on real YMF262) */ + /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */ + /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */ + if (chip->nts&0x40) + CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */ + else + CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */ + + if (chip->OPL3_mode & 1) + { + int chan_no = (r&0x0f) + ch_offset; + /* in OPL3 mode */ + //DO THIS: + //if this is 1st channel forming up a 4-op channel + //ALSO update slots of 2nd channel forming up 4-op channel + //else normal 2 operator function keyon/off + //OR THIS: + //if this is 2nd channel forming up 4-op channel just do nothing + //else normal 2 operator function keyon/off + switch(chan_no) + { + case 0: case 1: case 2: + case 9: case 10: case 11: + if (CH->extended) + { + //if this is 1st channel forming up a 4-op channel + //ALSO update slots of 2nd channel forming up 4-op channel + + /* refresh Total Level in FOUR SLOTs of this channel and channel+3 using data from THIS channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + (CH+3)->SLOT[SLOT1].TLL = (CH+3)->SLOT[SLOT1].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT1].ksl); + (CH+3)->SLOT[SLOT2].TLL = (CH+3)->SLOT[SLOT2].TL + (CH->ksl_base>>(CH+3)->SLOT[SLOT2].ksl); + + /* refresh frequency counter in FOUR SLOTs of this channel and channel+3 using data from THIS channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT1]); + CALC_FCSLOT(CH,&(CH+3)->SLOT[SLOT2]); + } + else + { + //else normal 2 operator function + /* refresh Total Level in both SLOTs of this channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + + /* refresh frequency counter in both SLOTs of this channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + } + break; + + case 3: case 4: case 5: + case 12: case 13: case 14: + if ((CH-3)->extended) + { + //if this is 2nd channel forming up 4-op channel just do nothing + } + else + { + //else normal 2 operator function + /* refresh Total Level in both SLOTs of this channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + + /* refresh frequency counter in both SLOTs of this channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + } + break; + + default: + /* refresh Total Level in both SLOTs of this channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + + /* refresh frequency counter in both SLOTs of this channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + break; + } + } + else + { + /* in OPL2 mode */ + + /* refresh Total Level in both SLOTs of this channel */ + CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); + CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); + + /* refresh frequency counter in both SLOTs of this channel */ + CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); + CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); + } + } + break; + + case 0xc0: + /* CH.D, CH.C, CH.B, CH.A, FB(3bits), C */ + if( (r&0xf) > 8) return; + + CH = &chip->P_CH[(r&0xf) + ch_offset]; + + if( chip->OPL3_mode & 1 ) + { + int base = ((r&0xf) + ch_offset) * 4; + + /* OPL3 mode */ + chip->pan[ base ] = (v & 0x10) ? ~0 : 0; /* ch.A */ + chip->pan[ base +1 ] = (v & 0x20) ? ~0 : 0; /* ch.B */ + chip->pan[ base +2 ] = (v & 0x40) ? ~0 : 0; /* ch.C */ + chip->pan[ base +3 ] = (v & 0x80) ? ~0 : 0; /* ch.D */ + } + else + { + int base = ((r&0xf) + ch_offset) * 4; + + /* OPL2 mode - always enabled */ + chip->pan[ base ] = ~0; /* ch.A */ + chip->pan[ base +1 ] = ~0; /* ch.B */ + chip->pan[ base +2 ] = ~0; /* ch.C */ + chip->pan[ base +3 ] = ~0; /* ch.D */ + } + + chip->pan_ctrl_value[ (r&0xf) + ch_offset ] = v; /* store control value for OPL3/OPL2 mode switching on the fly */ + + CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; + CH->SLOT[SLOT1].CON = v&1; + + if( chip->OPL3_mode & 1 ) + { + int chan_no = (r&0x0f) + ch_offset; + + switch(chan_no) + { + case 0: case 1: case 2: + case 9: case 10: case 11: + if (CH->extended) + { + UINT8 conn = (CH->SLOT[SLOT1].CON<<1) || ((CH+3)->SLOT[SLOT1].CON<<0); + switch(conn) + { + case 0: + /* 1 -> 2 -> 3 -> 4 - out */ + + CH->SLOT[SLOT1].connect = &phase_modulation; + CH->SLOT[SLOT2].connect = &phase_modulation2; + (CH+3)->SLOT[SLOT1].connect = &phase_modulation; + (CH+3)->SLOT[SLOT2].connect = &chanout[ chan_no + 3 ]; + break; + case 1: + /* 1 -> 2 -\ + 3 -> 4 -+- out */ + + CH->SLOT[SLOT1].connect = &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[ chan_no ]; + (CH+3)->SLOT[SLOT1].connect = &phase_modulation; + (CH+3)->SLOT[SLOT2].connect = &chanout[ chan_no + 3 ]; + break; + case 2: + /* 1 -----------\ + 2 -> 3 -> 4 -+- out */ + + CH->SLOT[SLOT1].connect = &chanout[ chan_no ]; + CH->SLOT[SLOT2].connect = &phase_modulation2; + (CH+3)->SLOT[SLOT1].connect = &phase_modulation; + (CH+3)->SLOT[SLOT2].connect = &chanout[ chan_no + 3 ]; + break; + case 3: + /* 1 ------\ + 2 -> 3 -+- out + 4 ------/ */ + CH->SLOT[SLOT1].connect = &chanout[ chan_no ]; + CH->SLOT[SLOT2].connect = &phase_modulation2; + (CH+3)->SLOT[SLOT1].connect = &chanout[ chan_no + 3 ]; + (CH+3)->SLOT[SLOT2].connect = &chanout[ chan_no + 3 ]; + break; + } + } + else + { + /* 2 operators mode */ + CH->SLOT[SLOT1].connect = CH->SLOT[SLOT1].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[(r&0xf)+ch_offset]; + } + break; + + case 3: case 4: case 5: + case 12: case 13: case 14: + if ((CH-3)->extended) + { + UINT8 conn = ((CH-3)->SLOT[SLOT1].CON<<1) || (CH->SLOT[SLOT1].CON<<0); + switch(conn) + { + case 0: + /* 1 -> 2 -> 3 -> 4 - out */ + + (CH-3)->SLOT[SLOT1].connect = &phase_modulation; + (CH-3)->SLOT[SLOT2].connect = &phase_modulation2; + CH->SLOT[SLOT1].connect = &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[ chan_no ]; + break; + case 1: + /* 1 -> 2 -\ + 3 -> 4 -+- out */ + + (CH-3)->SLOT[SLOT1].connect = &phase_modulation; + (CH-3)->SLOT[SLOT2].connect = &chanout[ chan_no - 3 ]; + CH->SLOT[SLOT1].connect = &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[ chan_no ]; + break; + case 2: + /* 1 -----------\ + 2 -> 3 -> 4 -+- out */ + + (CH-3)->SLOT[SLOT1].connect = &chanout[ chan_no - 3 ]; + (CH-3)->SLOT[SLOT2].connect = &phase_modulation2; + CH->SLOT[SLOT1].connect = &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[ chan_no ]; + break; + case 3: + /* 1 ------\ + 2 -> 3 -+- out + 4 ------/ */ + (CH-3)->SLOT[SLOT1].connect = &chanout[ chan_no - 3 ]; + (CH-3)->SLOT[SLOT2].connect = &phase_modulation2; + CH->SLOT[SLOT1].connect = &chanout[ chan_no ]; + CH->SLOT[SLOT2].connect = &chanout[ chan_no ]; + break; + } + } + else + { + /* 2 operators mode */ + CH->SLOT[SLOT1].connect = CH->SLOT[SLOT1].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[(r&0xf)+ch_offset]; + } + break; + + default: + /* 2 operators mode */ + CH->SLOT[SLOT1].connect = CH->SLOT[SLOT1].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[(r&0xf)+ch_offset]; + break; + } + } + else + { + /* OPL2 mode - always 2 operators mode */ + CH->SLOT[SLOT1].connect = CH->SLOT[SLOT1].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; + CH->SLOT[SLOT2].connect = &chanout[(r&0xf)+ch_offset]; + } + break; + + case 0xe0: /* waveform select */ + slot = slot_array[r&0x1f]; + if(slot < 0) return; + + slot += ch_offset*2; + + CH = &chip->P_CH[slot/2]; + + + /* store 3-bit value written regardless of current OPL2 or OPL3 mode... (verified on real YMF262) */ + v &= 7; + CH->SLOT[slot&1].waveform_number = v; + + /* ... but select only waveforms 0-3 in OPL2 mode */ + if( !(chip->OPL3_mode & 1) ) + { + v &= 3; /* we're in OPL2 mode */ + } + CH->SLOT[slot&1].wavetable = v * SIN_LEN; + break; + } +} + +#ifdef LOG_CYM_FILE +static void cymfile_callback (int n) +{ + if (cymfile) + { + fputc( (unsigned char)0, cymfile ); + } +} +#endif + +/* lock/unlock for common table */ +static int OPL3_LockTable(void) +{ + num_lock++; + if(num_lock>1) return 0; + + /* first time */ + + cur_chip = NULL; + + if( !init_tables() ) + { + num_lock--; + return -1; + } + +#ifdef LOG_CYM_FILE + cymfile = fopen("ymf262_.cym","wb"); + if (cymfile) + timer_pulse ( TIME_IN_HZ(110), 0, cymfile_callback); /*110 Hz pulse timer*/ + else + logerror("Could not create ymf262_.cym file\n"); +#endif + + return 0; +} + +static void OPL3_UnLockTable(void) +{ + if(num_lock) num_lock--; + if(num_lock) return; + + /* last time */ + + cur_chip = NULL; + OPLCloseTable(); + +#ifdef LOG_CYM_FILE + fclose (cymfile); + cymfile = NULL; +#endif + +} + +static void OPL3ResetChip(OPL3 *chip) +{ + int c,s; + + chip->eg_timer = 0; + chip->eg_cnt = 0; + + chip->noise_rng = 1; /* noise shift register */ + chip->nts = 0; /* note split */ + OPL3_STATUS_RESET(chip,0x60); + + /* reset with register write */ + OPL3WriteReg(chip,0x01,0); /* test register */ + OPL3WriteReg(chip,0x02,0); /* Timer1 */ + OPL3WriteReg(chip,0x03,0); /* Timer2 */ + OPL3WriteReg(chip,0x04,0); /* IRQ mask clear */ + + +//FIX IT registers 101, 104 and 105 + + +//FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers) + for(c = 0xff ; c >= 0x20 ; c-- ) + OPL3WriteReg(chip,c,0); +//FIX IT (dont change CH.D, CH.C, CH.B and CH.A in C0-C8 registers) + for(c = 0x1ff ; c >= 0x120 ; c-- ) + OPL3WriteReg(chip,c,0); + + + + /* reset operator parameters */ + for( c = 0 ; c < 9*2 ; c++ ) + { + OPL3_CH *CH = &chip->P_CH[c]; + for(s = 0 ; s < 2 ; s++ ) + { + CH->SLOT[s].state = EG_OFF; + CH->SLOT[s].volume = MAX_ATT_INDEX; + } + } +} + +/* Create one of virtual YMF262 */ +/* 'clock' is chip clock in Hz */ +/* 'rate' is sampling rate */ +static OPL3 *OPL3Create(int type, int clock, int rate) +{ + OPL3 *chip; + + if (OPL3_LockTable() ==-1) return NULL; + + /* allocate memory block */ + chip = (OPL3 *)malloc(sizeof(OPL3)); + + if (chip==NULL) + return NULL; + + /* clear */ + memset(chip, 0, sizeof(OPL3)); + + chip->type = type; + chip->clock = clock; + chip->rate = rate; + + /* init global tables */ + OPL3_initalize(chip); + + /* reset chip */ + OPL3ResetChip(chip); + return chip; +} + +/* Destroy one of virtual YMF262 */ +static void OPL3Destroy(OPL3 *chip) +{ + OPL3_UnLockTable(); + free(chip); +} + + +/* Optional handlers */ + +static void OPL3SetTimerHandler(OPL3 *chip,OPL3_TIMERHANDLER TimerHandler,int channelOffset) +{ + chip->TimerHandler = TimerHandler; + chip->TimerParam = channelOffset; +} +static void OPL3SetIRQHandler(OPL3 *chip,OPL3_IRQHANDLER IRQHandler,int param) +{ + chip->IRQHandler = IRQHandler; + chip->IRQParam = param; +} +static void OPL3SetUpdateHandler(OPL3 *chip,OPL3_UPDATEHANDLER UpdateHandler,int param) +{ + chip->UpdateHandler = UpdateHandler; + chip->UpdateParam = param; +} + +/* YMF262 I/O interface */ +static int OPL3Write(OPL3 *chip, int a, int v) +{ + /* data bus is 8 bits */ + v &= 0xff; + + switch(a&3) + { + case 0: /* address port 0 (register set #1) */ + chip->address = v; + break; + + case 1: /* data port - ignore A1 */ + case 3: /* data port - ignore A1 */ + if(chip->UpdateHandler) chip->UpdateHandler(chip->UpdateParam,0); + OPL3WriteReg(chip,chip->address,v); + break; + + case 2: /* address port 1 (register set #2) */ + + /* verified on real YMF262: + in OPL3 mode: + address line A1 is stored during *address* write and ignored during *data* write. + + in OPL2 mode: + register set#2 writes go to register set#1 (ignoring A1) + verified on registers from set#2: 0x01, 0x04, 0x20-0xef + The only exception is register 0x05. + */ + if( chip->OPL3_mode & 1 ) + { + /* OPL3 mode */ + chip->address = v | 0x100; + } + else + { + /* in OPL2 mode the only accessible in set #2 is register 0x05 */ + if( v==5 ) + chip->address = v | 0x100; + else + chip->address = v; /* verified range: 0x01, 0x04, 0x20-0xef(set #2 becomes set #1 in opl2 mode) */ + } + break; + } + + return chip->status>>7; +} + +static unsigned char OPL3Read(OPL3 *chip,int a) +{ + if( a==0 ) + { + /* status port */ + return chip->status; + } + + return 0x00; /* verified on real YMF262 */ +} + + + +static int OPL3TimerOver(OPL3 *chip,int c) +{ + if( c ) + { /* Timer B */ + OPL3_STATUS_SET(chip,0x20); + } + else + { /* Timer A */ + OPL3_STATUS_SET(chip,0x40); + } + /* reload timer */ + if (chip->TimerHandler) (chip->TimerHandler)(chip->TimerParam+c,(double)chip->T[c]*chip->TimerBase); + return chip->status>>7; +} + + + + +#if (BUILD_YMF262) + +#define MAX_OPL3_CHIPS 2 + +static OPL3 *YMF262[MAX_OPL3_CHIPS]; /* array of pointers to the YMF262's */ +static int YMF262NumChips = 0; /* number of chips */ + +int YMF262Init(int num, int clock, int rate) +{ + int i; + + if (YMF262NumChips) + return -1; /* duplicate init. */ + + YMF262NumChips = num; + + for (i = 0;i < YMF262NumChips; i++) + { + /* emulator create */ + YMF262[i] = OPL3Create(OPL3_TYPE_YMF262,clock,rate); + if(YMF262[i] == NULL) + { + /* it's really bad - we run out of memeory */ + YMF262NumChips = 0; + return -1; + } + } + + return 0; +} + +void YMF262Shutdown(void) +{ + int i; + + for (i = 0;i < YMF262NumChips; i++) + { + /* emulator shutdown */ + OPL3Destroy(YMF262[i]); + YMF262[i] = NULL; + } + YMF262NumChips = 0; +} +void YMF262ResetChip(int which) +{ + OPL3ResetChip(YMF262[which]); +} + +int YMF262Write(int which, int a, int v) +{ + return OPL3Write(YMF262[which], a, v); +} + +unsigned char YMF262Read(int which, int a) +{ + /* Note on status register: */ + + /* YM3526(OPL) and YM3812(OPL2) return bit2 and bit1 in HIGH state */ + + /* YMF262(OPL3) always returns bit2 and bit1 in LOW state */ + /* which can be used to identify the chip */ + + /* YMF278(OPL4) returns bit2 in LOW and bit1 in HIGH state ??? info from manual - not verified */ + + return OPL3Read(YMF262[which], a); +} +int YMF262TimerOver(int which, int c) +{ + return OPL3TimerOver(YMF262[which], c); +} + +void YMF262SetTimerHandler(int which, OPL3_TIMERHANDLER TimerHandler, int channelOffset) +{ + OPL3SetTimerHandler(YMF262[which], TimerHandler, channelOffset); +} +void YMF262SetIRQHandler(int which,OPL3_IRQHANDLER IRQHandler,int param) +{ + OPL3SetIRQHandler(YMF262[which], IRQHandler, param); +} +void YMF262SetUpdateHandler(int which,OPL3_UPDATEHANDLER UpdateHandler,int param) +{ + OPL3SetUpdateHandler(YMF262[which], UpdateHandler, param); +} + + +/* +** Generate samples for one of the YMF262's +** +** 'which' is the virtual YMF262 number +** '**buffers' is table of 4 pointers to the buffers: CH.A, CH.B, CH.C and CH.D +** 'length' is the number of samples that should be generated +*/ +#if 0 +void YMF262UpdateOne(int which, INT16 **buffers, int length) +#else +void YMF262UpdateOne(int which, INT16 *buffer, int length) +#endif +{ + OPL3 *chip = YMF262[which]; + UINT8 rhythm = chip->rhythm&0x20; +#if 0 + OPL3SAMPLE *ch_a = buffers[0]; + OPL3SAMPLE *ch_b = buffers[1]; + OPL3SAMPLE *ch_c = buffers[2]; + OPL3SAMPLE *ch_d = buffers[3]; +#endif + int i; + + if( (void *)chip != cur_chip ){ + cur_chip = (void *)chip; + /* rhythm slots */ + SLOT7_1 = &chip->P_CH[7].SLOT[SLOT1]; + SLOT7_2 = &chip->P_CH[7].SLOT[SLOT2]; + SLOT8_1 = &chip->P_CH[8].SLOT[SLOT1]; + SLOT8_2 = &chip->P_CH[8].SLOT[SLOT2]; + } + for( i=0; i < length ; i++ ) + { + int a,b,c,d; + + + advance_lfo(chip); + + /* clear channel outputs */ + memset(chanout, 0, sizeof(signed int) * 18); + +//profiler_mark(PROFILER_USER1); + +#if 1 + /* register set #1 */ + chan_calc(&chip->P_CH[0]); /* extended 4op ch#0 part 1 or 2op ch#0 */ + if (chip->P_CH[0].extended) + chan_calc_ext(&chip->P_CH[3]); /* extended 4op ch#0 part 2 */ + else + chan_calc(&chip->P_CH[3]); /* standard 2op ch#3 */ + + + chan_calc(&chip->P_CH[1]); /* extended 4op ch#1 part 1 or 2op ch#1 */ + if (chip->P_CH[1].extended) + chan_calc_ext(&chip->P_CH[4]); /* extended 4op ch#1 part 2 */ + else + chan_calc(&chip->P_CH[4]); /* standard 2op ch#4 */ + + + chan_calc(&chip->P_CH[2]); /* extended 4op ch#2 part 1 or 2op ch#2 */ + if (chip->P_CH[2].extended) + chan_calc_ext(&chip->P_CH[5]); /* extended 4op ch#2 part 2 */ + else + chan_calc(&chip->P_CH[5]); /* standard 2op ch#5 */ + + + if(!rhythm) + { + chan_calc(&chip->P_CH[6]); + chan_calc(&chip->P_CH[7]); + chan_calc(&chip->P_CH[8]); + } + else /* Rhythm part */ + { + chan_calc_rhythm(&chip->P_CH[0], (chip->noise_rng>>0)&1 ); + } + + /* register set #2 */ + chan_calc(&chip->P_CH[ 9]); + if (chip->P_CH[9].extended) + chan_calc_ext(&chip->P_CH[12]); + else + chan_calc(&chip->P_CH[12]); + + + chan_calc(&chip->P_CH[10]); + if (chip->P_CH[10].extended) + chan_calc_ext(&chip->P_CH[13]); + else + chan_calc(&chip->P_CH[13]); + + + chan_calc(&chip->P_CH[11]); + if (chip->P_CH[11].extended) + chan_calc_ext(&chip->P_CH[14]); + else + chan_calc(&chip->P_CH[14]); + + + /* channels 15,16,17 are fixed 2-operator channels only */ + chan_calc(&chip->P_CH[15]); + chan_calc(&chip->P_CH[16]); + chan_calc(&chip->P_CH[17]); +#endif +//profiler_mark(PROFILER_END); + + + +//profiler_mark(PROFILER_USER2); + /* accumulator register set #1 */ + a = chanout[0] & chip->pan[0]; + b = chanout[0] & chip->pan[1]; + c = chanout[0] & chip->pan[2]; + d = chanout[0] & chip->pan[3]; +#if 1 + a += chanout[1] & chip->pan[4]; + b += chanout[1] & chip->pan[5]; + c += chanout[1] & chip->pan[6]; + d += chanout[1] & chip->pan[7]; + a += chanout[2] & chip->pan[8]; + b += chanout[2] & chip->pan[9]; + c += chanout[2] & chip->pan[10]; + d += chanout[2] & chip->pan[11]; + + a += chanout[3] & chip->pan[12]; + b += chanout[3] & chip->pan[13]; + c += chanout[3] & chip->pan[14]; + d += chanout[3] & chip->pan[15]; + a += chanout[4] & chip->pan[16]; + b += chanout[4] & chip->pan[17]; + c += chanout[4] & chip->pan[18]; + d += chanout[4] & chip->pan[19]; + a += chanout[5] & chip->pan[20]; + b += chanout[5] & chip->pan[21]; + c += chanout[5] & chip->pan[22]; + d += chanout[5] & chip->pan[23]; + + a += chanout[6] & chip->pan[24]; + b += chanout[6] & chip->pan[25]; + c += chanout[6] & chip->pan[26]; + d += chanout[6] & chip->pan[27]; + a += chanout[7] & chip->pan[28]; + b += chanout[7] & chip->pan[29]; + c += chanout[7] & chip->pan[30]; + d += chanout[7] & chip->pan[31]; + a += chanout[8] & chip->pan[32]; + b += chanout[8] & chip->pan[33]; + c += chanout[8] & chip->pan[34]; + d += chanout[8] & chip->pan[35]; + + /* accumulator register set #2 */ + a += chanout[9] & chip->pan[36]; + b += chanout[9] & chip->pan[37]; + c += chanout[9] & chip->pan[38]; + d += chanout[9] & chip->pan[39]; + a += chanout[10] & chip->pan[40]; + b += chanout[10] & chip->pan[41]; + c += chanout[10] & chip->pan[42]; + d += chanout[10] & chip->pan[43]; + a += chanout[11] & chip->pan[44]; + b += chanout[11] & chip->pan[45]; + c += chanout[11] & chip->pan[46]; + d += chanout[11] & chip->pan[47]; + + a += chanout[12] & chip->pan[48]; + b += chanout[12] & chip->pan[49]; + c += chanout[12] & chip->pan[50]; + d += chanout[12] & chip->pan[51]; + a += chanout[13] & chip->pan[52]; + b += chanout[13] & chip->pan[53]; + c += chanout[13] & chip->pan[54]; + d += chanout[13] & chip->pan[55]; + a += chanout[14] & chip->pan[56]; + b += chanout[14] & chip->pan[57]; + c += chanout[14] & chip->pan[58]; + d += chanout[14] & chip->pan[59]; + + a += chanout[15] & chip->pan[60]; + b += chanout[15] & chip->pan[61]; + c += chanout[15] & chip->pan[62]; + d += chanout[15] & chip->pan[63]; + a += chanout[16] & chip->pan[64]; + b += chanout[16] & chip->pan[65]; + c += chanout[16] & chip->pan[66]; + d += chanout[16] & chip->pan[67]; + a += chanout[17] & chip->pan[68]; + b += chanout[17] & chip->pan[69]; + c += chanout[17] & chip->pan[70]; + d += chanout[17] & chip->pan[71]; +#endif + a >>= FINAL_SH; + b >>= FINAL_SH; + c >>= FINAL_SH; + d >>= FINAL_SH; + + /* limit check */ + a = limit( a+c , MAXOUT, MINOUT ); + b = limit( b+d , MAXOUT, MINOUT ); +// c = limit( c , MAXOUT, MINOUT ); +// d = limit( d , MAXOUT, MINOUT ); + + #ifdef SAVE_SAMPLE + if (which==0) + { + SAVE_ALL_CHANNELS + } + #endif + + /* store to sound buffer */ + *buffer++=(INT16)a; + *buffer++=(INT16)b; +#if 0 + ch_a[i] = a; + ch_b[i] = b; + ch_c[i] = c; + ch_d[i] = d; +#endif +//profiler_mark(PROFILER_END); + + advance(chip); + } + +} +#endif /* BUILD_YMF262 */ diff --git a/src/hardware/ymf262.h b/src/hardware/ymf262.h new file mode 100644 index 00000000..1ab2fa11 --- /dev/null +++ b/src/hardware/ymf262.h @@ -0,0 +1,53 @@ +#ifndef YMF262_H +#define YMF262_H + + +#define BUILD_YMF262 (HAS_YMF262) + + +/* select number of output bits: 8 or 16 */ +#define OPL3_SAMPLE_BITS 16 + +/* compiler dependence */ +#ifndef OSD_CPU_H +#define OSD_CPU_H +typedef unsigned char UINT8; /* unsigned 8bit */ +typedef unsigned short UINT16; /* unsigned 16bit */ +typedef unsigned int UINT32; /* unsigned 32bit */ +typedef signed char INT8; /* signed 8bit */ +typedef signed short INT16; /* signed 16bit */ +typedef signed int INT32; /* signed 32bit */ +#endif + +#if (OPL3_SAMPLE_BITS==16) +typedef INT16 OPL3SAMPLE; +#endif +#if (OPL3_SAMPLE_BITS==8) +typedef INT8 OPL3SAMPLE; +#endif + + +typedef void (*OPL3_TIMERHANDLER)(int channel,double interval_Sec); +typedef void (*OPL3_IRQHANDLER)(int param,int irq); +typedef void (*OPL3_UPDATEHANDLER)(int param,int min_interval_us); + + + +#if BUILD_YMF262 + +int YMF262Init(int num, int clock, int rate); +void YMF262Shutdown(void); +void YMF262ResetChip(int which); +int YMF262Write(int which, int a, int v); +unsigned char YMF262Read(int which, int a); +int YMF262TimerOver(int which, int c); +void YMF262UpdateOne(int which, INT16 **buffers, int length); + +void YMF262SetTimerHandler(int which, OPL3_TIMERHANDLER TimerHandler, int channelOffset); +void YMF262SetIRQHandler(int which, OPL3_IRQHANDLER IRQHandler, int param); +void YMF262SetUpdateHandler(int which, OPL3_UPDATEHANDLER UpdateHandler, int param); + +#endif + + +#endif /* YMF262_H */