From dff27bb2c45f9f8876d5e8575d2e42bc81ff8caf Mon Sep 17 00:00:00 2001 From: Sjoerd van der Berg Date: Sat, 25 Apr 2009 09:55:50 +0000 Subject: [PATCH] Add the integer dosbox opl Combine all the adlib stuff in 1 module Imported-from: https://svn.code.sf.net/p/dosbox/code-0/dosbox/trunk@3352 --- src/hardware/adlib.cpp | 214 +++--- src/hardware/adlib.h | 19 +- src/hardware/dbopl.cpp | 1467 ++++++++++++++++++++++++++++++++++++++++ src/hardware/dbopl.h | 250 +++++++ 4 files changed, 1860 insertions(+), 90 deletions(-) create mode 100644 src/hardware/dbopl.cpp create mode 100644 src/hardware/dbopl.h diff --git a/src/hardware/adlib.cpp b/src/hardware/adlib.cpp index 4e699f33..1943a50a 100644 --- a/src/hardware/adlib.cpp +++ b/src/hardware/adlib.cpp @@ -16,7 +16,7 @@ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -/* $Id: adlib.cpp,v 1.34 2009-04-17 17:24:47 c2woody Exp $ */ +/* $Id: adlib.cpp,v 1.35 2009-04-25 09:55:50 harekiet Exp $ */ #include #include @@ -24,15 +24,12 @@ #include #include -#include "dosbox.h" -#include "inout.h" -#include "mixer.h" -#include "pic.h" -#include "hardware.h" +#include "adlib.h" + #include "setup.h" #include "mapper.h" -#include "adlib.h" #include "mem.h" +#include "dbopl.h" /* Thanks to vdmsound for nice simple way to implement this @@ -188,6 +185,7 @@ namespace old_OPL3 { } + #define RAW_SIZE 1024 @@ -548,8 +546,8 @@ void Module::PortWrite( Bitu port, Bitu val, Bitu iolen ) { //Keep track of last write time lastUsed = PIC_Ticks; //Maybe only enable with a keyon? - if ( !chan->enabled ) { - chan->Enable(true); + if ( !mixerChan->enabled ) { + mixerChan->Enable(true); } if ( port&1 ) { switch ( mode ) { @@ -641,121 +639,165 @@ void Module::Init( Mode m ) { } } -Module::Module() { - reg.dual[0] = 0; - reg.dual[1] = 0; - reg.normal = 0; -} +}; //namespace -}; //Adlib Namespace - - -static Adlib::Module module; +static Adlib::Module* module = 0; static void OPL_CallBack(Bitu len) { - module.handler->Generate( module.chan, len ); + module->handler->Generate( module->mixerChan, len ); //Disable the sound generation after 30 seconds of silence - if ((PIC_Ticks-module.lastUsed) > 30000) { - module.chan->Enable(false); + if ((PIC_Ticks - module->lastUsed) > 30000) { + module->mixerChan->Enable(false); } } static Bitu OPL_Read(Bitu port,Bitu iolen) { - return module.PortRead( port, iolen ); + return module->PortRead( port, iolen ); } void OPL_Write(Bitu port,Bitu val,Bitu iolen) { - module.PortWrite( port, val, iolen ); + module->PortWrite( port, val, iolen ); } +/* + Save the current state of the operators as instruments in an reality adlib tracker file +*/ +static void SaveRad() { + char b[16 * 1024]; + int w = 0; + + FILE* handle = OpenCaptureFile("RAD Capture",".rad"); + if ( !handle ) + return; + //Header + fwrite( "RAD by REALiTY!!", 1, 16, handle ); + b[w++] = 0x10; //version + b[w++] = 0x06; //default speed and no description + //Write 18 instuments for all operators in the cache + for ( int i = 0; i < 18; i++ ) { + Bit8u* set = module->cache + ( i / 9 ) * 256; + Bitu offset = ((i % 9) / 3) * 8 + (i % 3); + Bit8u* base = set + offset; + b[w++] = 1 + i; //instrument number + b[w++] = base[0x23]; + b[w++] = base[0x20]; + b[w++] = base[0x43]; + b[w++] = base[0x40]; + b[w++] = base[0x63]; + b[w++] = base[0x60]; + b[w++] = base[0x83]; + b[w++] = base[0x80]; + b[w++] = set[0xc0 + (i % 9)]; + b[w++] = base[0xe3]; + b[w++] = base[0xe0]; + } + b[w++] = 0; //instrument 0, no more instruments following + b[w++] = 1; //1 pattern following + //Zero out the remaing part of the file a bit to make rad happy + for ( int i = 0; i < 64; i++ ) { + b[w++] = 0; + } + fwrite( b, 1, w, handle ); + fclose( handle ); +}; + + static void OPL_SaveRawEvent(bool pressed) { if (!pressed) return; +// SaveRad();return; /* Check for previously opened wave file */ - if ( module.capture ) { - delete module.capture; - module.capture = 0; + if ( module->capture ) { + delete module->capture; + module->capture = 0; LOG_MSG("Stopped Raw OPL capturing."); } else { LOG_MSG("Preparing to capture Raw OPL, will start with first note played."); - module.capture = new Adlib::Capture( &module.cache ); + module->capture = new Adlib::Capture( &module->cache ); } } -class OPL: public Module_base { -private: - IO_ReadHandleObject ReadHandler[3]; - IO_WriteHandleObject WriteHandler[3]; - MixerObject MixerChan; -public: - static OPL_Mode oplmode; +namespace Adlib { - OPL(Section* configuration):Module_base(configuration) { - Section_prop * section=static_cast(configuration); - Bitu base = section->Get_hex("sbbase"); - Bitu rate = section->Get_int("oplrate"); - std::string oplemu( section->Get_string( "oplemu" ) ); +Module::Module( Section* configuration ) : Module_base(configuration) { + reg.dual[0] = 0; + reg.dual[1] = 0; + reg.normal = 0; + handler = 0; + capture = 0; - module.chan = MixerChan.Install(OPL_CallBack,rate,"FM"); - if (oplemu == "old") { - if ( oplmode == OPL_opl2 ) { - module.handler = new old_OPL2::Handler(); - } else { - module.handler = new old_OPL3::Handler(); - } + Section_prop * section=static_cast(configuration); + Bitu base = section->Get_hex("sbbase"); + Bitu rate = section->Get_int("oplrate"); + std::string oplemu( section->Get_string( "oplemu" ) ); + + mixerChan = mixerObject.Install(OPL_CallBack,rate,"FM"); + if (oplemu == "old") { + if ( oplmode == OPL_opl2 ) { + handler = new old_OPL2::Handler(); } else { - if ( oplmode == OPL_opl2 ) { - module.handler = new OPL2::Handler(); - } else { - module.handler = new OPL3::Handler(); - } + handler = new old_OPL3::Handler(); } - module.handler->Init( rate ); - Bit8u portRange = 4; //opl2 will set this to 2 - switch ( oplmode ) { - case OPL_opl2: - portRange = 2; - module.Init( Adlib::MODE_OPL2 ); - break; - case OPL_dualopl2: - module.Init( Adlib::MODE_DUALOPL2 ); - break; - case OPL_opl3: - module.Init( Adlib::MODE_OPL3 ); - break; + } else if (oplemu == "fast") { + handler = new DBOPL::Handler(); + } else { + if ( oplmode == OPL_opl2 ) { + handler = new OPL2::Handler(); + } else { + handler = new OPL3::Handler(); } - //0x388 range - WriteHandler[0].Install(0x388,OPL_Write,IO_MB, portRange ); - ReadHandler[0].Install(0x388,OPL_Read,IO_MB, portRange - 1 ); - //0x220 range - WriteHandler[1].Install(base,OPL_Write,IO_MB, portRange ); - ReadHandler[1].Install(base,OPL_Read,IO_MB, portRange - 1 ); - //0x228 range - WriteHandler[2].Install(base+8,OPL_Write,IO_MB,2); - ReadHandler[2].Install(base+8,OPL_Read,IO_MB,1); - - MAPPER_AddHandler(OPL_SaveRawEvent,MK_f7,MMOD1|MMOD2,"caprawopl","Cap OPL"); } - ~OPL() { - if ( module.capture ) - delete module.capture; - old_OPL2::YM3812Shutdown(); - old_OPL3::YMF262Shutdown(); + handler->Init( rate ); + Bit8u portRange = 4; //opl2 will set this to 2 + switch ( oplmode ) { + case OPL_opl2: + portRange = 2; + Init( Adlib::MODE_OPL2 ); + break; + case OPL_dualopl2: + Init( Adlib::MODE_DUALOPL2 ); + break; + case OPL_opl3: + Init( Adlib::MODE_OPL3 ); + break; } -}; + //0x388 range + WriteHandler[0].Install(0x388,OPL_Write,IO_MB, portRange ); + ReadHandler[0].Install(0x388,OPL_Read,IO_MB, portRange - 1 ); + //0x220 range + WriteHandler[1].Install(base,OPL_Write,IO_MB, portRange ); + ReadHandler[1].Install(base,OPL_Read,IO_MB, portRange - 1 ); + //0x228 range + WriteHandler[2].Install(base+8,OPL_Write,IO_MB,2); + ReadHandler[2].Install(base+8,OPL_Read,IO_MB,1); -static OPL* test; + MAPPER_AddHandler(OPL_SaveRawEvent,MK_f7,MMOD1|MMOD2,"caprawopl","Cap OPL"); +} + +Module::~Module() { + if ( capture ) { + delete capture; + } + if ( handler ) { + delete handler; + } +} //Initialize static members -OPL_Mode OPL::oplmode=OPL_none; +OPL_Mode Module::oplmode=OPL_none; + +}; //Adlib Namespace + void OPL_Init(Section* sec,OPL_Mode oplmode) { - OPL::oplmode = oplmode; - test = new OPL(sec); + Adlib::Module::oplmode = oplmode; + module = new Adlib::Module( sec ); } void OPL_ShutDown(Section* sec){ - delete test; + delete module; + module = 0; + } diff --git a/src/hardware/adlib.h b/src/hardware/adlib.h index dd029250..07ae23c9 100644 --- a/src/hardware/adlib.h +++ b/src/hardware/adlib.h @@ -16,14 +16,19 @@ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -/* $Id: adlib.h,v 1.2 2009-04-06 11:23:21 qbix79 Exp $ */ +/* $Id: adlib.h,v 1.3 2009-04-25 09:55:50 harekiet Exp $ */ #ifndef DOSBOX_ADLIB_H #define DOSBOX_ADLIB_H #include "dosbox.h" #include "mixer.h" +#include "inout.h" +#include "mixer.h" +#include "setup.h" #include "pic.h" +#include "hardware.h" + namespace Adlib { @@ -108,7 +113,11 @@ typedef Bit8u RegisterCache[512]; //Internal class used for dro capturing class Capture; -class Module { +class Module: public Module_base { + IO_ReadHandleObject ReadHandler[3]; + IO_WriteHandleObject WriteHandler[3]; + MixerObject mixerObject; + //Mode we're running in Mode mode; //Last selected address in the chip for the different modes @@ -119,7 +128,8 @@ class Module { void CacheWrite( Bit32u reg, Bit8u val ); void DualWrite( Bit8u index, Bit8u reg, Bit8u val ); public: - MixerChannel* chan; + static OPL_Mode oplmode; + MixerChannel* mixerChan; Bit32u lastUsed; //Ticks when adlib was last used to turn of mixing after a few second Handler* handler; //Handler that will generate the sound @@ -132,7 +142,8 @@ public: Bitu PortRead( Bitu port, Bitu iolen ); void Init( Mode m ); - Module(); + Module( Section* configuration); + ~Module(); }; diff --git a/src/hardware/dbopl.cpp b/src/hardware/dbopl.cpp new file mode 100644 index 00000000..1d12af12 --- /dev/null +++ b/src/hardware/dbopl.cpp @@ -0,0 +1,1467 @@ +/* + * Copyright (C) 2002-2009 The DOSBox Team + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +/* + DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator. + Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2 + Except for the table generation it's all integer math + Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms + The generation was based on the MAME implementation but tried to have it use less memory and be faster in general + MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times + + //TODO Don't delay first operator 1 sample in opl3 mode + //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter + //TODO Fix panning for the rhytm channels, would any opl3 player use it and actually really change it though? + //TODO don't use variables in work structure for tremolo and vibrato but give the variables as parameters to GetSample + //TODO Since the vibrato takes 1024 samples it's easier to run the emulator in same vibrato chunks, vibrato would be costfree + + //DUNNO Keyon in 4op, switch to 2op without keyoff. +*/ + + +#include +#include +#include +#include "dosbox.h" +#include "dbopl.h" + + +#ifndef PI +#define PI 3.14159265358979323846 +#endif + +namespace DBOPL { + +#define MAX_SAMPLES 256 +#define OPLRATE 50000 + +//Only need 4 valid bits at the top for vibrato +#define VIBRATO_SH ( 32 - 4 ) +//Need 6 bits of accuracy +#define TREMOLO_SH ( 32 - 6 ) +#define TREMOLO_TABLE 52 + +//Wave bits available in the top of the 32bit range +//Original adlib uses 10.10, we use 12.20 +//Have to keep some bits in the top to allow for freqmul 0.5 +#define WAVE_BITS 12 +#define WAVE_SH ( 32 - WAVE_BITS ) +#define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 ) + +//Maximum amount of attenuation bits +//Envelope goes to 511, 9 bits +//Final envelope should get shifted up 3 bits, we already do that for some generation modes +#if (DBOPL_WAVE == WAVE_TABLEMUL ) +//Uses the value directly +#define ENV_BITS ( 9 ) +#else +//Add 3 bits here for more accuracy and would have to be shifted up either way +#define ENV_BITS ( 12 ) +#endif +//Limits of the envelope with those bits and when the envelope goes silent +#define ENV_MIN 0 +#define ENV_EXTRA ( ENV_BITS - 9 ) +#define ENV_MAX ( 511 << ENV_EXTRA ) +#define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) ) +#define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT ) + +//Attack/decay/release rate counter shift +#define RATE_SH 24 +#define RATE_MASK ( ( 1 << RATE_SH ) - 1 ) +//Has to fit within 16bit lookuptable +#define MUL_SH 16 + +//Check some ranges +#if ENV_EXTRA > 3 +#error Too many envelope bits +#endif + + +//How much to substract from the base value for the final attenuation +static const Bit8u KslCreateTable[16] = { + //0 will always be be lower than 7 * 8 + 64, 32, 24, 19, + 16, 12, 11, 10, + 8, 6, 5, 4, + 3, 2, 1, 0, +}; + +#define M(_X_) ((Bit8u)( (_X_) * 2)) +static const Bit8u FreqCreateTable[16] = { + M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ), + M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15) +}; +#undef M + +//We're not including the highest attack rate, that gets a special value +static const Bit8u AttackSamplesTable[13] = { + 69, 55, 46, 40, + 35, 29, 23, 20, + 19, 15, 11, 10, + 9 +}; +//On a real opl these values take 8 samples to reach and are based upon larger tables +static const Bit8u EnvelopeIncreaseTable[13] = { + 4, 5, 6, 7, + 8, 10, 12, 14, + 16, 20, 24, 28, + 32, +}; + +#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) +static Bit16u ExpTable[ 256 ]; +#endif + +#if ( DBOPL_WAVE == WAVE_HANDLER ) +//PI table used by WAVEHANDLER +static Bit16u SinTable[ 512 ]; +#endif + +#if ( DBOPL_WAVE > WAVE_HANDLER ) +//Layout of the waveform table in 512 entry intervals +//With overlapping waves we reduce the table to half it's size + +// | |//\\|____|WAV7|//__|/\ |____|/\/\| +// |\\//| | |WAV7| | \/| | | +// |06 |0126|17 |7 |3 |4 |4 5 |5 | + +//6 is just 0 shifted and masked + +static Bit16s WaveTable[ 8 * 512 ]; +//Distance into WaveTable the wave starts +static const Bit16u WaveBaseTable[8] = { + 0x000, 0x200, 0x200, 0x800, + 0xa00, 0xc00, 0x100, 0x400, + +}; +//Mask the counter with this +static const Bit16u WaveMaskTable[8] = { + 1023, 1023, 511, 511, + 1023, 1023, 512, 1023, +}; + +//Where to start the counter on at keyon +static const Bit16u WaveStartTable[8] = { + 512, 0, 0, 0, + 0, 512, 512, 256, +}; +#endif + +#if ( DBOPL_WAVE == WAVE_TABLEMUL ) +static Bit16u MulTable[ 384 ]; +#endif + +static Bit8u KslTable[ 8 * 16 ]; +static Bit8u TremoloTable[ TREMOLO_TABLE ]; +//Start of a channel behind the chip struct start +static Bit16u ChanOffsetTable[32]; +//Start of an operator behind the chip struct start +static Bit16u OpOffsetTable[64]; + +//The lower bits are the shift of the operator vibrato value +//The highest bit is right shifted to generate -1 or 0 for negation +//So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0 +static const Bit8s VibratoTable[ 8 ] = { + 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00, + 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80 +}; + +//Shift strength for the ksl value determined by ksl strength +static const Bit8u KslShiftTable[4] = { + 31,1,2,0 +}; + +//Generate a table index and table shift value using input value from a selected rate +static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) { + if ( val < 13 * 4 ) { //Rate 0 - 12 + shift = 12 - ( val >> 2 ); + index = val & 3; + } else if ( val < 15 * 4 ) { //rate 13 - 14 + shift = 0; + index = val - 12 * 4; + } else { //rate 15 and up + shift = 0; + index = 12; + } +} + +#if ( DBOPL_WAVE == WAVE_HANDLER ) +/* + Generate the different waveforms out of the sine/exponetial table using handlers +*/ +static inline Bits MakeVolume( Bitu wave, Bitu volume ) { + Bitu total = wave + volume; + Bitu index = total & 0xff; + Bitu sig = ExpTable[ index ]; + Bitu exp = total >> 8; +#if 0 + //Check if we overflow the 31 shift limit + if ( exp >= 32 ) { + LOG_MSG( "WTF %d %d", total, exp ); + } +#endif + return (sig >> exp); +}; + +static Bits FASTCALL WaveForm0( Bitu i, Bitu volume ) { + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + Bitu wave = SinTable[i & 511]; + return (MakeVolume( wave, volume ) ^ neg) - neg; +} +static Bits FASTCALL WaveForm1( Bitu i, Bitu volume ) { + Bit32u wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits FASTCALL WaveForm2( Bitu i, Bitu volume ) { + Bitu wave = SinTable[i & 511]; + return MakeVolume( wave, volume ); +} +static Bits FASTCALL WaveForm3( Bitu i, Bitu volume ) { + Bitu wave = SinTable[i & 255]; + wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits FASTCALL WaveForm4( Bitu i, Bitu volume ) { + //Twice as fast + i <<= 1; + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + Bitu wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return (MakeVolume( wave, volume ) ^ neg) - neg; +} +static Bits FASTCALL WaveForm5( Bitu i, Bitu volume ) { + //Twice as fast + i <<= 1; + Bitu wave = SinTable[i & 511]; + wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); + return MakeVolume( wave, volume ); +} +static Bits FASTCALL WaveForm6( Bitu i, Bitu volume ) { + Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 + return (MakeVolume( 0, volume ) ^ neg) - neg; +} +static Bits FASTCALL WaveForm7( Bitu i, Bitu volume ) { + //Negative is reversed here + Bits neg = (( i >> 9) & 1) - 1; + Bitu wave = (i << 3); + //When negative the volume also runs backwards + wave = ((wave ^ neg) - neg) & 4095; + return (MakeVolume( wave, volume ) ^ neg) - neg; +} + +static const WaveHandler WaveHandlerTable[8] = { + WaveForm0, WaveForm1, WaveForm2, WaveForm3, + WaveForm4, WaveForm5, WaveForm6, WaveForm7 +}; + +#endif + +//Structto hold the data everything well yeh works with +static struct { + Bitu samples; + Bits vibrato; + Bits tremolo; + inline void SetVibrato( Bit8s vib ) { + vibrato = vib; + vibrato &= ~0x80; + } + Bit32s output[MAX_SAMPLES * 2]; + //Could intermix the vib/trem table for slightly better cache hits + Bit8s vibTable[MAX_SAMPLES]; + Bit8s tremTable[MAX_SAMPLES]; +} Work; + +/* + Operator +*/ + +//We zero out when rate == 0 +inline void Operator::UpdateAttack( const Chip* chip ) { + Bit8u rate = reg60 >> 4; + if ( rate ) { + Bit8u val = (rate << 2) + ksr; + attackAdd = chip->attackRates[ val ]; + rateZero &= ~(1 << ATTACK); + } else { + attackAdd = 0; + rateZero |= (1 << ATTACK); + } +} +inline void Operator::UpdateDecay( const Chip* chip ) { + Bit8u rate = reg60 & 0xf; + if ( rate ) { + Bit8u val = (rate << 2) + ksr; + decayAdd = chip->linearRates[ val ]; + rateZero &= ~(1 << DECAY); + } else { + decayAdd = 0; + rateZero |= (1 << DECAY); + } +} +inline void Operator::UpdateRelease( const Chip* chip ) { + Bit8u rate = reg80 & 0xf; + if ( rate ) { + Bit8u val = (rate << 2) + ksr; + releaseAdd = chip->linearRates[ val ]; + rateZero &= ~(1 << RELEASE); + if ( !(reg20 & MASK_SUSTAIN ) ) { + rateZero &= ~( 1 << SUSTAIN ); + } + } else { + rateZero |= (1 << RELEASE); + releaseAdd = 0; + if ( !(reg20 & MASK_SUSTAIN ) ) { + rateZero |= ( 1 << SUSTAIN ); + } + } +} + +inline void Operator::UpdateAttenuation( ) { + Bit8u kslBase = (chanData >> SHIFT_KSLBASE) & 0xff; + Bit32u tl = reg40 & 0x3f; + Bit8u kslShift = KslShiftTable[ reg40 >> 6 ]; + //Make sure the attenuation goes to the right bits + totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max + totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift; +} + +void Operator::UpdateFrequency( ) { + Bit32u freq = chanData & (( 1 << 10 ) - 1); + Bit32u block = (chanData >> 10) & 0xff; + + waveAdd = (freq << block) * freqMul; + if ( reg20 & MASK_VIBRATO ) { + vibStrength = (Bit8u)(freq >> 7); + vibrato = ( vibStrength << block ) * freqMul; + } else { + vibStrength = 0; + vibrato = 0; + } +} + +void Operator::UpdateRates( const Chip* chip ) { + //Mame seems to reverse this where enabling ksr actually lowers + //the rate, but pdf manuals says otherwise? + Bit8u newKsr = (chanData >> SHIFT_KEYCODE) & 0xff; + if ( !( reg20 & MASK_KSR ) ) { + newKsr >>= 2; + } + if ( ksr == newKsr ) + return; + ksr = newKsr; + UpdateAttack( chip ); + UpdateDecay( chip ); + UpdateRelease( chip ); +} + +INLINE Bit32s Operator::RateForward( Bit32u add ) { + rateIndex += add; + Bit32s ret = rateIndex >> RATE_SH; + rateIndex = rateIndex & RATE_MASK; + return ret; +} + +template< Operator::State yes> +Bits Operator::TemplateVolume( ) { + Bit32s vol = activeLevel; + Bit32s change; + switch ( yes ) { + case OFF: + return ENV_MAX; + case ATTACK: + change = RateForward( attackAdd ); + if ( !change ) + return vol; + vol += ( (~vol) * change ) >> 3; + if ( vol < ENV_MIN ) { + activeLevel = ENV_MIN; + rateIndex = 0; + SetState( DECAY ); + return ENV_MIN; + } + break; + case DECAY: + vol += RateForward( decayAdd ); + if ( vol >= sustainLevel ) { + //Check if we didn't overshoot max attenuation, then just go off + if ( vol >= ENV_MAX ) { + activeLevel = ENV_MAX; + SetState( OFF ); + return ENV_MAX; + } + //Continue as sustain + rateIndex = 0; + SetState( SUSTAIN ); + } + break; + case SUSTAIN: + if ( reg20 & MASK_SUSTAIN ) { + return vol; + } + //In sustain phase, but not sustaining, do regular release + case RELEASE: + vol += RateForward( releaseAdd );; + if ( vol >= ENV_MAX ) { + activeLevel = ENV_MAX; + SetState( OFF ); + return ENV_MAX; + } + break; + } + activeLevel = vol; + return vol; +} + +static const VolumeHandler VolumeHandlerTable[5] = { + &Operator::TemplateVolume< Operator::OFF >, + &Operator::TemplateVolume< Operator::RELEASE >, + &Operator::TemplateVolume< Operator::SUSTAIN >, + &Operator::TemplateVolume< Operator::DECAY >, + &Operator::TemplateVolume< Operator::ATTACK > +}; + +INLINE Bitu Operator::ForwardVolume() { + return totalLevel + (this->*volHandler)() +#if defined ( DBOPL_TREMOLO ) + + (Work.tremolo & tremoloMask) +#endif + ; +} + + +INLINE Bitu Operator::ForwardWave() { +#if defined ( DBOPL_VIBRATO ) + if ( vibStrength >> (Bit8u)(Work.vibrato) ) { + Bit32s add = vibrato >> (Bit8u)(Work.vibrato); + //Sign extend over the shift value + Bit32s neg = Work.vibrato >> 16; + //Negate the add with -1 or 0 + add = ( add ^ neg ) - neg; + waveIndex += add + waveAdd; + return waveIndex >> WAVE_SH; + } +#endif + waveIndex += waveAdd; + return waveIndex >> WAVE_SH; +} + + +void Operator::Write20( const Chip* chip, Bit8u val ) { + Bit8u change = (reg20 ^ val ); + if ( !change ) + return; + reg20 = val; + //Shift the tremolo bit over the entire register, saved a branch, YES! + tremoloMask = (Bit8s)(val) >> 7; + tremoloMask &= ~(( 1 << ENV_EXTRA ) -1); + //Update specific features based on changes + if ( change & MASK_KSR ) { + UpdateRates( chip ); + } + //With sustain enable the volume doesn't change + if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) { + rateZero |= ( 1 << SUSTAIN ); + } else { + rateZero &= ~( 1 << SUSTAIN ); + } + //Frequency multiplier or vibrato changed + if ( change & (0xf | MASK_VIBRATO) ) { + freqMul = chip->freqMul[ val & 0xf ]; + UpdateFrequency(); + } +} + +void Operator::Write40( const Chip* chip, Bit8u val ) { + if (!(reg40 ^ val )) + return; + reg40 = val; + UpdateAttenuation( ); +} + +void Operator::Write60( const Chip* chip, Bit8u val ) { + Bit8u change = reg60 ^ val; + reg60 = val; + if ( change & 0x0f ) { + UpdateDecay( chip ); + } + if ( change & 0xf0 ) { + UpdateAttack( chip ); + } +} + +void Operator::Write80( const Chip* chip, Bit8u val ) { + Bit8u change = (reg80 ^ val ); + if ( !change ) + return; + reg80 = val; + Bit8u sustain = val >> 4; + //Turn 0xf into 0x1f + sustain |= ( sustain + 1) & 0x10; + sustainLevel = sustain << ( ENV_BITS - 5 ); + if ( change & 0x0f ) { + UpdateRelease( chip ); + } +} + +void Operator::WriteE0( const Chip* chip, Bit8u val ) { + if ( !(regE0 ^ val) ) + return; + //in opl3 mode you can always selet 7 waveforms regardless of waveformselect + Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) ); + regE0 = val; +#if ( DBOPL_WAVE == WAVE_HANDLER ) + waveHandler = WaveHandlerTable[ waveForm ]; +#else + waveBase = WaveTable + WaveBaseTable[ waveForm ]; + waveStart = WaveStartTable[ waveForm ] << WAVE_SH; + waveMask = WaveMaskTable[ waveForm ]; +#endif +} + +INLINE void Operator::SetState( Bit8u s ) { + state = s; + volHandler = VolumeHandlerTable[ s ]; +} + +INLINE bool Operator::Silent() const { + if ( !ENV_SILENT( totalLevel + activeLevel ) ) + return false; + if ( !(rateZero & ( 1 << state ) ) ) + return false; + return true; +}; + +void Operator::KeyOn( Bit8u mask ) { + if ( !keyOn ) { + //Restart the frequency generator +#if ( DBOPL_WAVE > WAVE_HANDLER ) + waveIndex = waveStart; +#else + waveIndex = 0; +#endif + rateIndex = 0; + SetState( ATTACK ); + } + keyOn |= mask; +} + +void Operator::KeyOff( Bit8u mask ) { + keyOn &= ~mask; + if ( !keyOn ) { + if ( state != OFF ) { + SetState( RELEASE ); + } + } +} + +INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) { +#if ( DBOPL_WAVE == WAVE_HANDLER ) + return waveHandler( index, vol << ( 3 - ENV_EXTRA ) ); +#elif ( DBOPL_WAVE == WAVE_TABLEMUL ) + return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH; +#elif ( DBOPL_WAVE == WAVE_TABLELOG ) + Bit32s wave = waveBase[ index & waveMask ]; + Bit32u total = ( wave & 0x7fff ) + vol; + Bit32s sig = ExpTable[ total & 0xff ]; + Bit32u exp = total >> 8; + Bit32s neg = wave >> 16; + return ((sig ^ neg) - neg) >> exp; +#else +#error "No valid wave routine" +#endif +} + +Bits INLINE Operator::GetSample( Bits modulation ) { + Bitu vol = ForwardVolume(); + if ( ENV_SILENT( vol ) ) { + //Simply forward the wave + waveIndex += waveAdd; + return 0; + } else { + Bitu index = ForwardWave(); + index += modulation; + return GetWave( index, vol ); + } +} + +Operator::Operator() { + freqMul = 0; + waveIndex = 0; + waveAdd = 0; + keyOn = 0; + ksr = 0; + chanData = 0; + SetState( OFF ); + rateZero = (1 << OFF); + + sustainLevel = ENV_MAX; + activeLevel = ENV_MAX; + totalLevel = ENV_MAX; +} + +/* + Channel +*/ + +Channel::Channel() { + //Frequency init + chanData = 0; + regC0 = 0; + maskLeft = -1; + maskRight = -1; + feedback = 31; + fourMask = 0; + synthHandler = &Channel::BlockTemplate< sm2FM >; +}; + +void Channel::SetChanData( const Chip* chip, Bit32u data ) { + Bit32u change = chanData ^ data; + chanData = data; + Op( 0 )->chanData = data; + Op( 1 )->chanData = data; + //Since a frequency update triggered this, always update frequency + Op( 0 )->UpdateFrequency(); + Op( 1 )->UpdateFrequency(); + if ( change & ( 0xff << SHIFT_KSLBASE ) ) { + Op( 0 )->UpdateAttenuation(); + Op( 1 )->UpdateAttenuation(); + } + if ( change & ( 0xff << SHIFT_KEYCODE ) ) { + Op( 0 )->UpdateRates( chip ); + Op( 1 )->UpdateRates( chip ); + } +} + +void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) { + //Extrace the frequency bits + Bit32u data = chanData & 0xffff; + Bit32u kslBase = KslTable[ data >> 6 ]; + Bit32u keyCode = ( data & 0x1c00) >> 9; + if ( chip->reg08 & 0x40 ) { + keyCode |= ( data & 0x100)>>8; /* notesel == 1 */ + } else { + keyCode |= ( data & 0x200)>>9; /* notesel == 0 */ + } + //Add the keycode and ksl into the highest bits of chanData + data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE ); + ( this + 0 )->SetChanData( chip, data ); + if ( fourOp & 0x3f ) { + ( this + 1 )->SetChanData( chip, data ); + } +} + +void Channel::WriteA0( const Chip* chip, Bit8u val ) { + Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask; + //Don't handle writes to silent fourop channels + if ( fourOp > 0x80 ) + return; + Bit32u change = (chanData ^ val ) & 0xff; + if ( change ) { + chanData ^= change; + UpdateFrequency( chip, fourOp ); + } +} + +void Channel::WriteB0( const Chip* chip, Bit8u val ) { + Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask; + //Don't handle writes to silent fourop channels + if ( fourOp > 0x80 ) + return; + Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00; + if ( change ) { + chanData ^= change; + UpdateFrequency( chip, fourOp ); + } + //Check for a change in the keyon/off state + if ( !(( val ^ regB0) & 0x20)) + return; + regB0 = val; + if ( val & 0x20 ) { + Op(0)->KeyOn( 0x1 ); + Op(1)->KeyOn( 0x1 ); + if ( fourOp & 0x3f ) { + ( this + 1 )->Op(0)->KeyOn( 1 ); + ( this + 1 )->Op(1)->KeyOn( 1 ); + } + } else { + Op(0)->KeyOff( 0x1 ); + Op(1)->KeyOff( 0x1 ); + if ( fourOp & 0x3f ) { + ( this + 1 )->Op(0)->KeyOff( 1 ); + ( this + 1 )->Op(1)->KeyOff( 1 ); + } + } +} + +void Channel::WriteC0( const Chip* chip, Bit8u val ) { + Bit8u change = val ^ regC0; + if ( !change ) + return; + regC0 = val; + feedback = ( val >> 1 ) & 7; + if ( feedback ) { + //We shift the input to the right 10 bit wave index value + feedback = 9 - feedback; + } else { + feedback = 31; + } + //Select the new synth mode + if ( chip->opl3Active ) { + //4-op mode enabled for this channel + if ( (chip->reg104 & fourMask) & 0x3f ) { + Channel* chan0, *chan1; + //Check if it's the 2nd channel in a 4-op + if ( !(fourMask & 0x80 ) ) { + chan0 = this; + chan1 = this + 1; + } else { + chan0 = this - 1; + chan1 = this; + } + + Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 ); + switch ( synth ) { + case 0: + chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >; + break; + case 1: + chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >; + break; + case 2: + chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >; + break; + case 3: + chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >; + break; + } + //Disable updating rhytm channels + } else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) { + + //Regular dual op, am or fm + } else if ( val & 1 ) { + synthHandler = &Channel::BlockTemplate< sm3AM >; + } else { + synthHandler = &Channel::BlockTemplate< sm3FM >; + } + maskLeft = ( val & 0x10 ) ? -1 : 0; + maskRight = ( val & 0x20 ) ? -1 : 0; + //opl2 active + } else { + //Disable updating rhytm channels + if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) { + + //Regular dual op, am or fm + } else if ( val & 1 ) { + synthHandler = &Channel::BlockTemplate< sm2AM >; + } else { + synthHandler = &Channel::BlockTemplate< sm2FM >; + } + } +} + +void Channel::ResetC0( const Chip* chip ) { + Bit8u val = regC0; + regC0 ^= 0xff; + WriteC0( chip, val ); +}; + +template< bool opl3Mode> +void Channel::GenerateRhytm( Bit32s* output ) { + Channel* chan = this; + + //BassDrum + Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback; + old[0] = old[1]; + old[1] = Op(0)->GetSample( mod ); + + //When bassdrum is in AM mode first operator is ignoed + if ( chan->regC0 & 1 ) { + mod = 0; + } else { + mod = old[0]; + } + Bit32s sample = Op(1)->GetSample( mod ); + + Operator* op2 = ( this + 1 )->Op(0); + Operator* op4 = ( this + 2 )->Op(0); + + //Precalculate stuff used by other oupts + Bit32u noiseBit = rand() & 0x2; + Bit32u c2 = op2->ForwardWave(); + //(bit 7 ^ bit 2) | bit 3 -> combined in bit 1 + Bit32u phaseBit = ( (c2 >> 6) ^ ( c2 >> 1 ) ) | ( c2 >> 2 ); + Bit32u c4 = op4->ForwardWave(); + //bit 5 ^ bit 3 to bit 1 + Bit32u gateBit = ( c4 >> 4 ) ^ ( c4 >> 3 ); + phaseBit = (phaseBit | gateBit) & 0x2; + + //Hi-Hat + Bit32u hhVol = op2->ForwardVolume(); + if ( !ENV_SILENT( hhVol ) ) { + /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ + /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ + Bit32u hhIndex = ( phaseBit << 8 ) | ( 0xd0 >> ( phaseBit ^ noiseBit ) ); + sample += op2->GetWave( hhIndex, hhVol ); + } + //Snare Drum + Operator* op3 = ( this + 1 )->Op(1); + Bit32u sdVol = op3->ForwardVolume(); + if ( !ENV_SILENT( sdVol ) ) { + Bit32u sdBits = 0x100 + (c2 & 0x100); + Bit32u sdIndex = sdBits ^ ( noiseBit << 7 ); + sample += op3->GetWave( sdIndex, sdVol ); + } + //Tom-tom + sample += op4->GetSample( 0 ); + //Top-Cymbal + Operator* op5 = ( this + 2 )->Op(1); + Bit32u tcVol = op5->ForwardVolume(); + if ( !ENV_SILENT( tcVol ) ) { + Bit32u tcIndex = (1 + phaseBit) << 8; + sample += op5->GetWave( tcIndex, tcVol ); + } + sample <<= 1; + if ( opl3Mode ) { + output[0] += sample; + output[1] += sample; + } else { + output[0] += sample; + } +} + +template +Channel* Channel::BlockTemplate( ) { + switch( mode ) { + case sm2AM: + case sm3AM: + if ( Op(0)->Silent() && Op(1)->Silent() ) { + old[0] = old[1] = 0; + return (this + 1); + } + break; + case sm2FM: + case sm3FM: + if ( Op(1)->Silent() ) { + old[0] = old[1] = 0; + return (this + 1); + } + break; + case sm3FMFM: + if ( Op(3)->Silent() ) { + old[0] = old[1] = 0; + return (this + 2); + } + break; + case sm3AMFM: + if ( Op(0)->Silent() && Op(3)->Silent() ) { + old[0] = old[1] = 0; + return (this + 2); + } + break; + case sm3FMAM: + if ( Op(1)->Silent() && Op(3)->Silent() ) { + old[0] = old[1] = 0; + return (this + 2); + } + break; + case sm3AMAM: + if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) { + old[0] = old[1] = 0; + return (this + 2); + } + break; + } + for ( Bitu i = 0; i < Work.samples; i++ ) { + Work.vibrato = Work.vibTable[i]; + Work.tremolo = Work.tremTable[i]; + + //Early out for rhytm handlers + if ( mode == sm2Rhytm ) { + GenerateRhytm( Work.output + i ); + continue; //Prevent some unitialized value bitching + } else if ( mode == sm3Rhytm ) { + GenerateRhytm( Work.output + i * 2 ); + continue; //Prevent some unitialized value bitching + } + + //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise + Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback; + old[0] = old[1]; + old[1] = Op(0)->GetSample( mod ); + Bit32s sample; + Bit32s out0 = old[0]; + if ( mode == sm2AM || mode == sm3AM ) { + sample = out0 + Op(1)->GetSample( 0 ); + } else if ( mode == sm2FM || mode == sm3FM ) { + sample = Op(1)->GetSample( out0 ); + } else if ( mode == sm3FMFM ) { + Bits next = Op(1)->GetSample( out0 ); + next = Op(2)->GetSample( next ); + sample = Op(3)->GetSample( next ); + } else if ( mode == sm3AMFM ) { + sample = out0; + Bits next = Op(1)->GetSample( 0 ); + next = Op(2)->GetSample( next ); + sample += Op(3)->GetSample( next ); + } else if ( mode == sm3FMAM ) { + sample = Op(1)->GetSample( out0 ); + Bits next = Op(2)->GetSample( 0 ); + sample += Op(3)->GetSample( next ); + } else if ( mode == sm3AMAM ) { + sample = out0; + Bits next = Op(1)->GetSample( 0 ); + sample += Op(2)->GetSample( next ); + sample += Op(3)->GetSample( 0 ); + } + switch( mode ) { + case sm2AM: + case sm2FM: + Work.output[ i ] += sample; + break; + case sm3AM: + case sm3FM: + case sm3FMFM: + case sm3AMFM: + case sm3FMAM: + case sm3AMAM: + Work.output[ i * 2 + 0 ] += sample & maskLeft; + Work.output[ i * 2 + 1 ] += sample & maskRight; + break; + } + } + switch( mode ) { + case sm2AM: + case sm2FM: + case sm3AM: + case sm3FM: + return ( this + 1 ); + case sm3FMFM: + case sm3AMFM: + case sm3FMAM: + case sm3AMAM: + return( this + 2 ); + case sm2Rhytm: + case sm3Rhytm: + return( this + 3 ); + } + return 0; +} + +/* + Chip +*/ + +Chip::Chip() { + reg104 = 0; + opl3Active = 0; +} + + +Bit8u Chip::ForwardTremolo( ) { + tremoloCounter += tremoloAdd; + if ( tremoloCounter >= (TREMOLO_TABLE << TREMOLO_SH) ) { + tremoloCounter -= TREMOLO_TABLE << TREMOLO_SH; + } + Bitu index = tremoloCounter >> TREMOLO_SH; + return TremoloTable[ index ] >> tremoloShift; +} + +Bit8s Chip::ForwardVibrato( ) { + vibratoCounter += vibratoAdd; + Bitu index = vibratoCounter >> VIBRATO_SH; + //Vibrato shift, basically makes the shift greater reducing the actual final value + return VibratoTable[index & 7] + vibratoShift; +} + +void Chip::WriteBD( Bit8u val ) { + Bit8u change = regBD ^ val; + if ( !change ) + return; + regBD = val; + //TODO could do this with shift and xor? + vibratoShift = (val & 0x40) ? 0x00 : 0x01; + tremoloShift = (val & 0x80) ? 0x00 : 0x02; + if ( val & 0x20 ) { + //Drum was just enabled, make sure channel 6 has the right synth + if ( change & 0x20 ) { + if ( opl3Active ) { + chan[6].synthHandler = &Channel::BlockTemplate< sm3Rhytm >; + } else { + chan[6].synthHandler = &Channel::BlockTemplate< sm2Rhytm >; + } + } + //Bass Drum + if ( val & 0x10 ) { + chan[6].op[0].KeyOn( 0x2 ); + chan[6].op[1].KeyOn( 0x2 ); + } else { + chan[6].op[0].KeyOff( 0x2 ); + chan[6].op[1].KeyOff( 0x2 ); + } + //Hi-Hat + if ( val & 0x1 ) { + chan[7].op[0].KeyOn( 0x2 ); + } else { + chan[7].op[0].KeyOff( 0x2 ); + } + //Snare + if ( val & 0x8 ) { + chan[7].op[1].KeyOn( 0x2 ); + } else { + chan[7].op[1].KeyOff( 0x2 ); + } + //Tom-Tom + if ( val & 0x4 ) { + chan[8].op[0].KeyOn( 0x2 ); + } else { + chan[8].op[0].KeyOff( 0x2 ); + } + //Top Cymbal + if ( val & 0x2 ) { + chan[8].op[1].KeyOn( 0x2 ); + } else { + chan[8].op[1].KeyOff( 0x2 ); + } + //Toggle keyoffs when we turn off the rhytm + } else if ( change & 0x20 ) { + //Trigger a reset to setup the original synth handler + chan[6].ResetC0( this ); + chan[6].op[0].KeyOff( 0x2 ); + chan[6].op[1].KeyOff( 0x2 ); + chan[7].op[0].KeyOff( 0x2 ); + chan[7].op[1].KeyOff( 0x2 ); + chan[8].op[0].KeyOff( 0x2 ); + chan[8].op[1].KeyOff( 0x2 ); + } +} + + +#define REGOP( _FUNC_ ) \ + index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \ + if ( OpOffsetTable[ index ] ) { \ + Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \ + regOp->_FUNC_( this, val ); \ + } + +#define REGCHAN( _FUNC_ ) \ + index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \ + if ( ChanOffsetTable[ index ] ) { \ + Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \ + regChan->_FUNC_( this, val ); \ + } + +void Chip::WriteReg( Bit32u reg, Bit8u val ) { + Bitu index; + switch ( (reg & 0xf0) >> 4 ) { + case 0x00 >> 4: + if ( reg == 0x01 ) { + waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0; + } else if ( reg == 0x104 ) { + //Only detect changes in lowest 6 bits + if ( !((reg104 ^ val) & 0x3f) ) + return; + //Always keep the highest bit enabled, for checking > 0x80 + reg104 = 0x80 | ( val & 0x3f ); + } else if ( reg == 0x105 ) { + //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register + if ( !((opl3Active ^ val) & 1 ) ) + return; + opl3Active = ( val & 1 ) ? 0xff : 0; + //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers + for ( int i = 0; i < 18;i++ ) { + chan[i].ResetC0( this ); + } + } else if ( reg == 0x08 ) { + reg08 = val; + } + case 0x10 >> 4: + break; + case 0x20 >> 4: + case 0x30 >> 4: + REGOP( Write20 ); + break; + case 0x40 >> 4: + case 0x50 >> 4: + REGOP( Write40 ); + break; + case 0x60 >> 4: + case 0x70 >> 4: + REGOP( Write60 ); + break; + case 0x80 >> 4: + case 0x90 >> 4: + REGOP( Write80 ); + break; + case 0xa0 >> 4: + REGCHAN( WriteA0 ); + break; + case 0xb0 >> 4: + if ( reg == 0xbd ) { + WriteBD( val ); + } else { + REGCHAN( WriteB0 ); + } + break; + case 0xc0 >> 4: + REGCHAN( WriteC0 ); + case 0xd0 >> 4: + break; + case 0xe0 >> 4: + case 0xf0 >> 4: + REGOP( WriteE0 ); + break; + } +} + + +Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) { + switch ( port & 3 ) { + case 0: + return val; + case 2: + if ( opl3Active || (val == 0x05) ) + return 0x100 | val; + else + return val; + } + return 0; +} + +void Chip::GenerateBlock2( Bitu samples ) { + Work.samples = samples; + for ( Bitu i = 0; i < Work.samples; i++ ) { + Work.vibTable[i] = ForwardVibrato(); + Work.tremTable[i] = ForwardTremolo(); + Work.output[i] = 0; + } + int count = 0; + for( Channel* ch = chan; ch < chan + 9; ) { + count++; + ch = (ch->*(ch->synthHandler))(); + } +} + +void Chip::GenerateBlock3( Bitu samples ) { + Work.samples = samples; + for ( Bitu i = 0; i < Work.samples; i++ ) { + Work.vibTable[i] = ForwardVibrato(); + Work.tremTable[i] = ForwardTremolo(); + Work.output[i*2 + 0] = 0; + Work.output[i*2 + 1] = 0; + } + int count = 0; + for( Channel* ch = chan; ch < chan + 18; ) { + count++; + ch = (ch->*(ch->synthHandler))(); + } +} + +void Chip::Setup( Bit32u rate ) { + //Vibrato forwards every 1024 samples + vibratoAdd = (Bit32u)((double)rate * (double)( 1 << (VIBRATO_SH - 10) ) / OPLRATE); + vibratoCounter = 0; + //tremolo forwards every 64 samples + //We use a 52 entry table, real is 210, so repeat each sample an extra 4 times + tremoloAdd = (Bit32u)((double)rate * (double)( 1 << (TREMOLO_SH - 6 - 2) ) / OPLRATE); + tremoloCounter = 0; + //10 bits of frequency counter + //With higher octave this gets shifted up + //-1 since the freqCreateTable = *2 + double scale = ((double)OPLRATE * (double)( 1 << ( WAVE_SH - 10 - 1))) / rate; + for ( int i = 0; i < 16; i++ ) { + //Use rounding with 0.5 + freqMul[i] = (Bit32u)( 0.5 + scale * FreqCreateTable[ i ] ); + } + + scale = (double)OPLRATE / rate; + //-3 since the real envelope takes 8 steps to reach the single value we supply + for ( Bit8u i = 0; i < 76; i++ ) { + Bit8u index, shift; + EnvelopeSelect( i, index, shift ); + linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 ))); + } + //Generate the best matching attack rate + for ( Bit8u i = 0; i < 62; i++ ) { + Bit8u index, shift; + EnvelopeSelect( i, index, shift ); + //Original amount of samples the attack would take + Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale); + + Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 ))); + Bit32s bestAdd; + Bit32u bestDiff = 1 << 30; + for( Bit32u passes = 0; passes < 16; passes ++ ) { + Bit32s volume = ENV_MAX; + Bit32s samples = 0; + Bit32u count = 0; + while ( volume > 0 && samples < original * 2 ) { + count += guessAdd; + Bit32s change = count >> RATE_SH; + count &= RATE_MASK; + if ( change ) { + volume += ( ~volume * change ) >> 3; + } + samples++; + + } + Bit32s diff = original - samples; + Bit32u lDiff = labs( diff ); + //Init last on first pass + if ( lDiff < bestDiff ) { + bestDiff = lDiff; + bestAdd = guessAdd; + if ( !bestDiff ) + break; + } + //Below our target + if ( diff < 0 ) { + //Better than the last time + Bit32s mul = ((original - diff) << 12) / original; + guessAdd = ((guessAdd * mul) >> 12); + guessAdd++; + } else if ( diff > 0 ) { + Bit32s mul = ((original - diff) << 12) / original; + guessAdd = (guessAdd * mul) >> 12; + guessAdd--; + } + } + attackRates[i] = bestAdd; + } + for ( Bit8u i = 62; i < 76; i++ ) { + //This should provide instant volume maximizing + attackRates[i] = 8 << RATE_SH; + } + //Setup the channels with the correct four op flags + //Channels are accessed through a table so they appear linear here + chan[ 0].fourMask = 0x00 | ( 1 << 0 ); + chan[ 1].fourMask = 0x80 | ( 1 << 0 ); + chan[ 2].fourMask = 0x00 | ( 1 << 1 ); + chan[ 3].fourMask = 0x80 | ( 1 << 1 ); + chan[ 4].fourMask = 0x00 | ( 1 << 2 ); + chan[ 5].fourMask = 0x80 | ( 1 << 2 ); + + chan[ 9].fourMask = 0x00 | ( 1 << 3 ); + chan[10].fourMask = 0x80 | ( 1 << 3 ); + chan[11].fourMask = 0x00 | ( 1 << 4 ); + chan[12].fourMask = 0x80 | ( 1 << 4 ); + chan[13].fourMask = 0x00 | ( 1 << 5 ); + chan[14].fourMask = 0x80 | ( 1 << 5 ); + + //mark the rhythm channels + chan[ 6].fourMask = 0x40; + chan[ 7].fourMask = 0x40; + chan[ 8].fourMask = 0x40; + + //Clear Everything in opl3 mode + WriteReg( 0x105, 0x1 ); + for ( int i = 0; i < 512; i++ ) { + if ( i == 0x105 ) + continue; + WriteReg( i, 0xff ); + WriteReg( i, 0x0 ); + } + WriteReg( 0x105, 0x0 ); + //Clear everything in opl2 mode + for ( int i = 0; i < 255; i++ ) { + WriteReg( i, 0xff ); + WriteReg( i, 0x0 ); + } +} + +static bool doneTables = false; +void InitTables( void ) { + if ( doneTables ) + return; + doneTables = true; +#if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) + //Exponential volume table, same as the real adlib + for ( int i = 0; i < 256; i++ ) { + //Save them in reverse + ExpTable[i] = (int)( 0.5 + ( pow(2, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 ); + ExpTable[i] += 1024; //or remove the -1 oh well :) + //Preshift to the left once so the final volume can shift to the right + ExpTable[i] *= 2; + } +#endif +#if ( DBOPL_WAVE == WAVE_HANDLER ) + //Add 0.5 for the trunc rounding of the integer cast + //Do a PI sinetable instead of the original 0.5 PI + for ( int i = 0; i < 512; i++ ) { + SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); + } +#endif +#if ( DBOPL_WAVE == WAVE_TABLEMUL ) + //Multiplication based tables + for ( int i = 0; i < 384; i++ ) { + int s = i * 8; + //TODO maybe keep some of the precision errors of the original table? + double val = ( 0.5 + ( pow(2, -1 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH )); + MulTable[i] = (Bit16u)(val); + } + + //Sine Wave Base + for ( int i = 0; i < 512; i++ ) { + WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084); + WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ]; + } + //Exponential wave + for ( int i = 0; i < 256; i++ ) { + WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2, -1 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 ); + WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ]; + } +#endif +#if ( DBOPL_WAVE == WAVE_TABLELOG ) + //Sine Wave Base + for ( int i = 0; i < 512; i++ ) { + WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); + WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i]; + } + //Exponential wave + for ( int i = 0; i < 256; i++ ) { + WaveTable[ 0x700 + i ] = i * 8; + WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8; + } +#endif + + // | |//\\|____|WAV7|//__|/\ |____|/\/\| + // |\\//| | |WAV7| | \/| | | + // |06 |0126|27 |7 |3 |4 |4 5 |5 | + +#if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL )) + for ( int i = 0; i < 256; i++ ) { + //Fill silence gaps + WaveTable[ 0x400 + i ] = WaveTable[0]; + WaveTable[ 0x500 + i ] = WaveTable[0]; + WaveTable[ 0x900 + i ] = WaveTable[0]; + WaveTable[ 0xc00 + i ] = WaveTable[0]; + WaveTable[ 0xd00 + i ] = WaveTable[0]; + //Replicate sines in other pieces + WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ]; + //double speed sines + WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ]; + WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ]; + WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ]; + WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ]; + } +#endif + + //Create the ksl table + for ( int oct = 0; oct < 8; oct++ ) { + int base = oct * 8; + for ( int i = 0; i < 16; i++ ) { + int val = base - KslCreateTable[i]; + if ( val < 0 ) + val = 0; + //*4 for the final range to match attenuation range + KslTable[ oct * 16 + i ] = val * 4; + } + } + //Create the Tremolo table, just increase and decrease a triangle wave + for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) { + Bit8u val = i << ENV_EXTRA; + TremoloTable[i] = val; + TremoloTable[TREMOLO_TABLE - 1 - i] = val; + } + //Create a table with offsets of the channels from the start of the chip + DBOPL::Chip* chip = 0; + for ( Bitu i = 0; i < 32; i++ ) { + Bitu index = i & 0xf; + if ( index >= 9 ) { + ChanOffsetTable[i] = 0; + continue; + } + //Make sure the four op channels follow eachother + if ( index < 6 ) { + index = (index % 3) * 2 + ( index / 3 ); + } + //Add back the bits for highest ones + if ( i >= 16 ) + index += 9; + Bitu blah = reinterpret_cast( &(chip->chan[ index ]) ); + ChanOffsetTable[i] = blah; + } + //Same for operators + for ( Bitu i = 0; i < 64; i++ ) { + if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) { + OpOffsetTable[i] = 0; + continue; + } + Bitu chNum = (i / 8) * 3 + (i % 8) % 3; + //Make sure we use 16 and up for the 2nd range to match the chanoffset gap + if ( chNum >= 12 ) + chNum += 16 - 12; + Bitu opNum = ( i % 8 ) / 3; + DBOPL::Channel* chan = 0; + Bitu blah = reinterpret_cast( &(chan->op[opNum]) ); + OpOffsetTable[i] = ChanOffsetTable[ chNum ] + blah; + } +#if 0 + //Stupid checks if table's are correct + for ( Bitu i = 0; i < 18; i++ ) { + Bit32u find = (Bit16u)( &(chip->chan[ i ]) ); + for ( Bitu c = 0; c < 32; c++ ) { + if ( ChanOffsetTable[c] == find ) { + find = 0; + break; + } + } + if ( find ) { + find = find; + } + } + for ( Bitu i = 0; i < 36; i++ ) { + Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) ); + for ( Bitu c = 0; c < 64; c++ ) { + if ( OpOffsetTable[c] == find ) { + find = 0; + break; + } + } + if ( find ) { + find = find; + } + } +#endif +} + +Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) { + return chip.WriteAddr( port, val ); + +} +void Handler::WriteReg( Bit32u addr, Bit8u val ) { + chip.WriteReg( addr, val ); +} + +void Handler::Generate( MixerChannel* chan, Bitu samples ) { + if ( !chip.opl3Active ) { + chip.GenerateBlock2( samples ); + chan->AddSamples_m32( samples, Work.output ); + } else { + chip.GenerateBlock3( samples ); + chan->AddSamples_s32( samples, Work.output ); + } +} + +void Handler::Init( Bitu rate ) { + InitTables(); + chip.Setup( rate ); +} + + +}; //Namespace Kiet diff --git a/src/hardware/dbopl.h b/src/hardware/dbopl.h new file mode 100644 index 00000000..2d08bf7b --- /dev/null +++ b/src/hardware/dbopl.h @@ -0,0 +1,250 @@ +/* + * Copyright (C) 2002-2009 The DOSBox Team + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +#include "adlib.h" +#include "dosbox.h" + +//Use 8 handlers based on a small logatirmic wavetabe and an exponential table for volume +#define WAVE_HANDLER 10 +//Use a logarithmic wavetable with an exponential table for volume +#define WAVE_TABLELOG 11 +//Use a linear wavetable with a multiply table for volume +#define WAVE_TABLEMUL 12 + +//Select the type of wave generator routine +#define DBOPL_WAVE WAVE_HANDLER +//Enable vibrato in the output +#define DBOPL_VIBRATO +//Enable tremolo in the output +#define DBOPL_TREMOLO + +namespace DBOPL { + +struct Chip; +struct Operator; +struct Channel; + +#if (DBOPL_WAVE == WAVE_HANDLER) +typedef Bits ( FASTCALL *WaveHandler) ( Bitu i, Bitu volume ); +#endif + +typedef Bits ( DBOPL::Operator::*VolumeHandler) ( ); +typedef Channel* ( DBOPL::Channel::*SynthHandler) ( ); + +//Different synth modes that can generate blocks of data +typedef enum { + smNone, + sm2AM, + sm2FM, + sm2Rhytm, + sm3AM, + sm3FM, + sm3FMFM, + sm3AMFM, + sm3FMAM, + sm3AMAM, + sm3Rhytm, +} SynthMode; + +//Shifts for the values contained in chandata variable +enum { + SHIFT_KSLBASE = 16, + SHIFT_KEYCODE = 24, +}; + +struct Operator { +public: + //Masks for operator 20 values + enum { + MASK_KSR = 0x10, + MASK_SUSTAIN = 0x20, + MASK_VIBRATO = 0x40, + MASK_TREMOLO = 0x80, + }; + + typedef enum { + OFF, + RELEASE, + SUSTAIN, + DECAY, + ATTACK, + } State; + + VolumeHandler volHandler; + +#if (DBOPL_WAVE == WAVE_HANDLER) + WaveHandler waveHandler; //Routine that generate a wave +#else + Bit16s* waveBase; + Bit32u waveMask; + Bit32u waveStart; +#endif + Bit32u waveIndex; //WAVE_BITS shifted counter of the frequency index + Bit32u waveAdd; + + Bit32u chanData; //Frequency/octave and derived data coming from whatever channel controls this + Bit32u freqMul; //Scale channel frequency with this, TODO maybe remove? + Bit32u vibrato; //Scaled up vibrato strength + Bit32s sustainLevel; //When stopping at sustain level stop here + Bit32s totalLevel; //totalLeve is added to every generated volume + Bit32s activeLevel; //The currently active volume + + Bit32u attackAdd; //Timers for the different states of the envelope + Bit32u decayAdd; + Bit32u releaseAdd; + Bit32u rateIndex; //Current position of the evenlope + + Bit8u rateZero; //Bits for the different states of the envelope having no changes + Bit8u keyOn; //Bitmask of different values that can generate keyon + //Registers, also used to check for changes + Bit8u reg20, reg40, reg60, reg80, regE0; + //Active part of the envelope we're in + Bit8u state; + //0xff when tremolo is enabled + Bit8u tremoloMask; + //Strength of the vibrato + Bit8u vibStrength; + //Keep track of the calculated KSR so we can check for changes + Bit8u ksr; + +private: + void SetState( Bit8u s ); + void UpdateAttack( const Chip* chip ); + void UpdateRelease( const Chip* chip ); + void UpdateDecay( const Chip* chip ); +public: + //is the operator silent? + void UpdateAttenuation(); + void UpdateRates( const Chip* chip ); + void UpdateFrequency( ); + + void Write20( const Chip* chip, Bit8u val ); + void Write40( const Chip* chip, Bit8u val ); + void Write60( const Chip* chip, Bit8u val ); + void Write80( const Chip* chip, Bit8u val ); + void WriteE0( const Chip* chip, Bit8u val ); + + bool Silent() const; + void KeyOn( Bit8u mask); + void KeyOff( Bit8u mask); + + template< State state> + Bits TemplateVolume( ); + + Bit32s RateForward( Bit32u add ); + Bitu ForwardWave(); + Bitu ForwardVolume(); + + Bits GetSample( Bits modulation ); + Bits GetWave( Bitu index, Bitu vol ); +public: + Operator(); +}; + +struct Channel { + Operator op[2]; + inline Operator* Op( Bitu index ) { + return &( ( this + (index >> 1) )->op[ index & 1 ]); + } + SynthHandler synthHandler; + Bit32u chanData; //Frequency/octave and derived values + Bit32s old[2]; //Old data for feedback + + Bit8u feedback; //Feedback shift + Bit8u regB0; //Register values to check for changes + Bit8u regC0; + //This should correspond with reg104, bit 6 indicates a rhytm channel, bit 7 indicates a silent channel + Bit8u fourMask; + Bit8s maskLeft; //Sign extended values for both channel's panning + Bit8s maskRight; + + //Forward the channel data to the operators of the channel + void SetChanData( const Chip* chip, Bit32u data ); + //Change in the chandata, check for new values and if we have to forward to operators + void UpdateFrequency( const Chip* chip, Bit8u fourOp ); + void WriteA0( const Chip* chip, Bit8u val ); + void WriteB0( const Chip* chip, Bit8u val ); + void WriteC0( const Chip* chip, Bit8u val ); + void ResetC0( const Chip* chip ); + + //call this for the first channel + template< bool opl3Mode > + void GenerateRhytm( Bit32s* output ); + + //Generate blocks of data in specific modes + template + Channel* BlockTemplate( ); + void BlockRhytm( ); + Channel(); +}; + +struct Chip { + //This is used as the base counter for vibrato and tremolo + Bit32u tremoloCounter; + Bit32u tremoloAdd; + Bit32u vibratoCounter; + Bit32u vibratoAdd; + + //Frequency scales for the different multiplications + Bit32u freqMul[16]; + //Rates for decay and release for rate of this chip + Bit32u linearRates[76]; + //Best match attack rates for the rate of this chip + Bit32u attackRates[76]; + + //18 channels with 2 operators each + Channel chan[18]; + + Bit8u reg104; + Bit8u reg08; + Bit8u reg04; + Bit8u regBD; + Bit8u vibratoShift; + Bit8u tremoloShift; + //Mask for allowed wave forms + Bit8u waveFormMask; + //0 or -1 when enabled + Bit8s opl3Active; + + Bit8u ForwardTremolo(); + Bit8s ForwardVibrato(); + + void WriteBD( Bit8u val ); + void WriteReg(Bit32u reg, Bit8u val ); + + Bit32u WriteAddr( Bit32u port, Bit8u val ); + + void GenerateBlock2( Bitu samples ); + void GenerateBlock3( Bitu samples ); + + void Generate( Bit32u samples ); + void Setup( Bit32u r ); + + Chip(); +}; + +struct Handler : public Adlib::Handler { + DBOPL::Chip chip; + virtual Bit32u WriteAddr( Bit32u port, Bit8u val ); + virtual void WriteReg( Bit32u addr, Bit8u val ); + virtual void Generate( MixerChannel* chan, Bitu samples ); + virtual void Init( Bitu rate ); +}; + + +}; //Namespace \ No newline at end of file