1
0
Fork 0
dosbox-staging/src/hardware/adlib.cpp
2008-07-14 19:07:04 +00:00

490 lines
14 KiB
C++

/*
* Copyright (C) 2002-2007 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>
#include <dirent.h>
#include "dosbox.h"
#include "inout.h"
#include "mixer.h"
#include "pic.h"
#include "hardware.h"
#include "setup.h"
#include "mapper.h"
#include "mem.h"
/*
Thanks to vdmsound for nice simple way to implement this
*/
#define logerror
#ifdef _MSC_VER
#pragma pack (1)
#endif
#define HW_OPL2 0
#define HW_DUALOPL2 1
#define HW_OPL3 2
struct RawHeader {
Bit8u id[8]; /* 0x00, "DBRAWOPL" */
Bit16u versionHigh; /* 0x08, size of the data following the m */
Bit16u versionLow; /* 0x0a, size of the data following the m */
Bit32u commands; /* 0x0c, Bit32u amount of command/data pairs */
Bit32u milliseconds; /* 0x10, Bit32u Total milliseconds of data in this chunk */
Bit8u hardware; /* 0x14, Bit8u Hardware Type 0=opl2,1=dual-opl2,2=opl3 */
Bit8u format; /* 0x15, Bit8u Format 0=cmd/data interleaved, 1 maybe all cdms, followed by all data */
Bit8u compression; /* 0x16, Bit8u Compression Type, 0 = No Compression */
Bit8u delay256; /* 0x17, Bit8u Delay 1-256 msec command */
Bit8u delayShift8; /* 0x18, Bit8u (delay + 1)*256 */
Bit8u conversionTableSize; /* 0x191, Bit8u Raw Conversion Table size */
} GCC_ATTRIBUTE(packed);
#ifdef _MSC_VER
#pragma pack()
#endif
/*
The Raw Tables is < 128 and is used to convert raw commands into a full register index
When the high bit of a raw command is set it indicates the cmd/data pair is to be sent to the 2nd port
After the conversion table the raw data follows immediatly till the end of the chunk
*/
typedef Bit8u RawCache[2][256];
//Table to map the opl register to one <127 for dro saving
class RawCapture {
//127 entries to go from raw data to registers
Bit8u ToReg[127];
//How many entries in the ToPort are used
Bit8u RawUsed;
//256 entries to go from port index to raw data
Bit8u ToRaw[256];
Bit8u delay256;
Bit8u delayShift8;
RawHeader header;
FILE* handle; //File used for writing
Bit32u startTicks; //Start used to check total raw length on end
Bit32u lastTicks; //Last ticks when last last cmd was added
Bit8u buf[1024]; //16 added for delay commands and what not
Bit32u bufUsed;
Bit8u cmd[2]; //Last cmd's sent to either ports
bool doneOpl3;
bool doneDualOpl2;
RawCache* cache;
void MakeEntry( Bit8u reg, Bit8u& raw ) {
ToReg[ raw ] = reg;
ToRaw[ reg ] = raw;
raw++;
}
void MakeTables( void ) {
Bit8u index = 0;
memset( ToReg, 0xff, sizeof ( ToReg ) );
memset( ToRaw, 0xff, sizeof ( ToRaw ) );
//Select the entries that are valid and the index is the mapping to the index entry
MakeEntry( 0x01, index ); //0x01: Waveform select
MakeEntry( 0x04, index ); //104: Four-Operator Enable
MakeEntry( 0x05, index ); //105: OPL3 Mode Enable
MakeEntry( 0x08, index ); //08: CSW / NOTE-SEL
MakeEntry( 0xbd, index ); //BD: Tremolo Depth / Vibrato Depth / Percussion Mode / BD/SD/TT/CY/HH On
//Add the 32 byte range that hold the 18 operators
for ( int i = 0 ; i < 24; i++ ) {
if ( (i & 7) < 6 ) {
MakeEntry(0x20 + i, index ); //20-35: Tremolo / Vibrato / Sustain / KSR / Frequency Multiplication Facto
MakeEntry(0x40 + i, index ); //40-55: Key Scale Level / Output Level
MakeEntry(0x60 + i, index ); //60-75: Attack Rate / Decay Rate
MakeEntry(0x80 + i, index ); //80-95: Sustain Level / Release Rate
MakeEntry(0xe0 + i, index ); //E0-F5: Waveform Select
}
}
//Add the 9 byte range that hold the 9 channels
for ( int i = 0 ; i < 9; i++ ) {
MakeEntry(0xa0 + i, index ); //A0-A8: Frequency Number
MakeEntry(0xb0 + i, index ); //B0-B8: Key On / Block Number / F-Number(hi bits)
MakeEntry(0xc0 + i, index ); //C0-C8: FeedBack Modulation Factor / Synthesis Type
}
//Store the amount of bytes the table contains
RawUsed = index;
// assert( RawUsed <= 127 );
delay256 = RawUsed;
delayShift8 = RawUsed+1;
}
void ClearBuf( void ) {
fwrite( buf, 1, bufUsed, handle );
header.commands += bufUsed / 2;
bufUsed = 0;
}
void AddBuf( Bit8u raw, Bit8u val ) {
buf[bufUsed++] = raw;
buf[bufUsed++] = val;
if ( bufUsed >= sizeof( buf ) ) {
ClearBuf();
}
}
void AddWrite( Bit8u index, Bit8u reg, Bit8u val ) {
/*
Do some special checks if we're doing opl3 or dualopl2 commands
Although you could pretty much just stick to always doing opl3 on the player side
*/
if ( index ) {
//opl3 enabling will always override dual opl
if ( header.hardware != HW_OPL3 && reg == 4 && val && (*cache)[1][5] ) {
header.hardware = HW_OPL3;
}
if ( header.hardware == HW_OPL2 && reg >= 0xb0 && reg <=0xb8 && val ) {
header.hardware = HW_DUALOPL2;
}
}
Bit8u raw = ToRaw[reg];
if ( raw == 0xff )
return;
if ( index )
raw |= 128;
AddBuf( raw, val );
}
void WriteCache( void ) {
Bitu i, val;
/* Check the registers to add */
for (i=0;i<256;i++) {
//Skip the note on entries
if (i>=0xb0 && i<=0xb8)
continue;
val = (*cache)[0][i];
if (val) {
AddWrite( 0, i, val );
}
val = (*cache)[1][i];
if (val) {
AddWrite( 1, i, val );
}
}
}
void InitHeader( void ) {
memset( &header, 0, sizeof( header ) );
memcpy( header.id, "DBRAWOPL", 8 );
header.versionLow = 0;
header.versionHigh = 2;
header.delay256 = delay256;
header.delayShift8 = delayShift8;
header.conversionTableSize = RawUsed;
}
void CloseFile( void ) {
if ( handle ) {
ClearBuf();
/* Endianize the header and write it to beginning of the file */
var_write( &header.versionHigh, header.versionHigh );
var_write( &header.versionLow, header.versionLow );
var_write( &header.commands, header.commands );
var_write( &header.milliseconds, header.milliseconds );
fseek( handle, 0, SEEK_SET );
fwrite( &header, 1, sizeof( header ), handle );
fclose( handle );
handle = 0;
}
}
public:
bool DoWrite( Bit8u index, Bit8u reg, Bit8u val ) {
//Check the raw index for this register if we actually have to save it
if ( handle ) {
/*
Check if we actually care for this to be logged, else just ignore it
*/
Bit8u raw = ToRaw[reg];
if ( raw == 0xff ) {
return true;
}
/* Check if this command will not just replace the same value
in a reg that doesn't do anything with it
*/
if ( (*cache)[index][reg] == val )
return true;
/* Check how much time has passed */
Bitu passed = PIC_Ticks - lastTicks;
lastTicks = PIC_Ticks;
header.milliseconds += passed;
//if ( passed > 0 ) LOG_MSG( "Delay %d", passed ) ;
// If we passed more than 30 seconds since the last command, we'll restart the the capture
if ( passed > 30000 ) {
CloseFile();
goto skipWrite;
}
while (passed > 0) {
if (passed < 257) { //1-256 millisecond delay
AddBuf( delay256, passed - 1 );
passed = 0;
} else {
Bitu shift = (passed >> 8);
passed -= shift << 8;
AddBuf( delayShift8, shift - 1 );
}
}
AddWrite( index, reg, val );
return true;
}
skipWrite:
//Not yet capturing to a file here
//Check for commands that would start capturing, if it's not one of them return
if ( !(
//note on in any channel
( reg>=0xb0 && reg<=0xb8 && (val&0x020) ) ||
//Percussion mode enabled and a note on in any percussion instrument
( reg == 0xbd && ( (val&0x3f) > 0x20 ) )
)) {
return true;
}
handle = OpenCaptureFile("Raw Opl",".dro");
if (!handle)
return false;
InitHeader();
//Prepare space at start of the file for the header
fwrite( &header, 1, sizeof(header), handle );
/* write the Raw To Reg table */
fwrite( &ToReg, 1, RawUsed, handle );
/* Write the cache of last commands */
WriteCache( );
/* Write the command that triggered this */
AddWrite( index, reg, val );
//Init the timing information for the next commands
lastTicks = PIC_Ticks;
startTicks = PIC_Ticks;
return true;
}
RawCapture( RawCache* _cache ) {
cache = _cache;
handle = 0;
bufUsed = 0;
MakeTables();
}
~RawCapture() {
CloseFile();
}
};
#ifdef _MSC_VER
/* Disable recurring warnings */
# pragma warning ( disable : 4018 )
# pragma warning ( disable : 4244 )
#endif
struct __MALLOCPTR {
void* m_ptr;
__MALLOCPTR(void) : m_ptr(NULL) { }
__MALLOCPTR(void* src) : m_ptr(src) { }
void* operator=(void* rhs) { return (m_ptr = rhs); }
operator int*() const { return (int*)m_ptr; }
operator int**() const { return (int**)m_ptr; }
operator char*() const { return (char*)m_ptr; }
};
namespace OPL2 {
#define HAS_YM3812 1
#include "fmopl.c"
void TimerOver(Bitu val){
YM3812TimerOver(val>>8,val & 0xff);
}
void TimerHandler(int channel,double interval_Sec) {
if (interval_Sec==0.0) return;
PIC_AddEvent(TimerOver,1000.0f*interval_Sec,channel);
}
}
#undef OSD_CPU_H
#undef TL_TAB_LEN
namespace THEOPL3 {
#define HAS_YMF262 1
#include "ymf262.c"
void TimerOver(Bitu val){
YMF262TimerOver(val>>8,val & 0xff);
}
void TimerHandler(int channel,double interval_Sec) {
if (interval_Sec==0.0) return;
PIC_AddEvent(TimerOver,1000.0f*interval_Sec,channel);
}
}
#define OPL2_INTERNAL_FREQ 3600000 // The OPL2 operates at 3.6MHz
#define OPL3_INTERNAL_FREQ 14400000 // The OPL3 operates at 14.4MHz
#define RAW_SIZE 1024
static struct {
bool active;
OPL_Mode mode;
MixerChannel * chan;
Bit32u last_used; //Ticks when adlib was last used to turn of mixing after a few second
Bit16s mixbuf[2][128]; //Mix buffer to mix dual opl2 into final stream
Bit8u cmd[2]; //Last cmd written to either index
RawCache cache;
RawCapture* raw;
} opl;
static void OPL_CallBack(Bitu len) {
/* Check for size to update and check for 1 ms updates to the opl registers */
Bitu i;
switch(opl.mode) {
case OPL_opl2:
OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)MixTemp,len);
opl.chan->AddSamples_m16(len,(Bit16s*)MixTemp);
break;
case OPL_opl3:
THEOPL3::YMF262UpdateOne(0,(OPL2::INT16 *)MixTemp,len);
opl.chan->AddSamples_s16(len,(Bit16s*)MixTemp);
break;
case OPL_dualopl2:
OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)opl.mixbuf[0],len);
OPL2::YM3812UpdateOne(1,(OPL2::INT16 *)opl.mixbuf[1],len);
for (i=0;i<len;i++) {
((Bit16s*)MixTemp)[i*2+0]=opl.mixbuf[0][i];
((Bit16s*)MixTemp)[i*2+1]=opl.mixbuf[1][i];
}
opl.chan->AddSamples_s16(len,(Bit16s*)MixTemp);
break;
}
if ((PIC_Ticks-opl.last_used)>30000) {
opl.chan->Enable(false);
opl.active=false;
}
}
static Bitu OPL_Read(Bitu port,Bitu iolen) {
Bitu addr=port & 3;
switch (opl.mode) {
case OPL_opl2:
return OPL2::YM3812Read(0,addr);
case OPL_dualopl2:
return OPL2::YM3812Read(addr>>1,addr);
case OPL_opl3:
return THEOPL3::YMF262Read(0,addr);
}
return 0xff;
}
void OPL_Write(Bitu port,Bitu val,Bitu iolen) {
opl.last_used=PIC_Ticks;
if (!opl.active) {
opl.active=true;
opl.chan->Enable(true);
}
port&=3;
Bitu index = port>>1;
if ( port&1 ) {
Bit8u cmd = opl.cmd[index];
if ( opl.raw )
opl.raw->DoWrite( index, cmd, val );
//Write to the cache after, so the raw can check for unchanged values
opl.cache[index][cmd]=val;
} else {
opl.cmd[ index ] = val;
}
switch (opl.mode) {
case OPL_opl2:
OPL2::YM3812Write(0,port,val);
break;
case OPL_opl3:
THEOPL3::YMF262Write(0,port,val);
break;
case OPL_dualopl2:
OPL2::YM3812Write( index,port,val);
break;
}
}
static void OPL_SaveRawEvent(bool pressed) {
if (!pressed)
return;
/* Check for previously opened wave file */
if ( opl.raw ) {
delete opl.raw;
opl.raw = 0;
LOG_MSG("Stopped Raw OPL capturing.");
} else {
LOG_MSG("Preparing to capture Raw OPL, will start with first note played.");
opl.raw = new RawCapture( &opl.cache );
}
}
class OPL: public Module_base {
private:
IO_ReadHandleObject ReadHandler[3];
IO_WriteHandleObject WriteHandler[3];
MixerObject MixerChan;
public:
static OPL_Mode oplmode;
OPL(Section* configuration):Module_base(configuration) {
Section_prop * section=static_cast<Section_prop *>(configuration);
Bitu base = section->Get_hex("sbbase");
Bitu rate = section->Get_int("oplrate");
if (OPL2::YM3812Init(2,OPL2_INTERNAL_FREQ,rate)) {
E_Exit("Can't create OPL2 Emulator");
};
OPL2::YM3812SetTimerHandler(0,OPL2::TimerHandler,0);
OPL2::YM3812SetTimerHandler(1,OPL2::TimerHandler,256);
if (THEOPL3::YMF262Init(1,OPL3_INTERNAL_FREQ,rate)) {
E_Exit("Can't create OPL3 Emulator");
};
THEOPL3::YMF262SetTimerHandler(0,THEOPL3::TimerHandler,0);
WriteHandler[0].Install(0x388,OPL_Write,IO_MB,4);
ReadHandler[0].Install(0x388,OPL_Read,IO_MB,4);
if (oplmode>=OPL_dualopl2) {
WriteHandler[1].Install(base,OPL_Write,IO_MB,4);
ReadHandler[1].Install(base,OPL_Read,IO_MB,4);
}
WriteHandler[2].Install(base+8,OPL_Write,IO_MB,2);
ReadHandler[2].Install(base+8,OPL_Read,IO_MB,2);
opl.raw = 0;
opl.active=false;
opl.last_used=0;
opl.mode=oplmode;
memset(&opl.raw,0,sizeof(opl.raw));
opl.chan=MixerChan.Install(OPL_CallBack,rate,"FM");
MAPPER_AddHandler(OPL_SaveRawEvent,MK_f7,MMOD1|MMOD2,"caprawopl","Cap OPL");
}
~OPL() {
if (opl.raw)
delete opl.raw;
OPL2::YM3812Shutdown();
THEOPL3::YMF262Shutdown();
}
};
static OPL* test;
//Initialize static members
OPL_Mode OPL::oplmode=OPL_none;
void OPL_Init(Section* sec,OPL_Mode oplmode) {
OPL::oplmode = oplmode;
test = new OPL(sec);
}
void OPL_ShutDown(Section* sec){
delete test;
}