1
0
Fork 0
dosbox-staging/src/cpu/cpu.cpp
2003-11-05 19:41:10 +00:00

936 lines
24 KiB
C++
Raw Blame History

/*
* Copyright (C) 2002-2003 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/* $Id: cpu.cpp,v 1.37 2003-11-05 19:41:10 harekiet Exp $ */
#include <assert.h>
#include "dosbox.h"
#include "cpu.h"
#include "memory.h"
#include "debug.h"
#include "keyboard.h"
#include "setup.h"
#include "paging.h"
#if 1
#undef LOG
#define LOG(X,Y)
#endif
CPU_Regs cpu_regs;
CPUBlock cpu;
Segments Segs;
Bits CPU_Cycles=0;
Bits CPU_CycleLeft=0;
Bits CPU_CycleMax=1500;
CPU_Decoder * cpudecoder;
void CPU_Real_16_Slow_Start(bool big);
void CPU_Core_Full_Start(bool big);
void CPU_Core_Normal_Start(bool big);
static Bits CPU_Core_Normal_Decode(void);
static Bits CPU_Core_Full_Decode(void);
#if 1
#define realcore_start CPU_Core_Normal_Start
#define pmodecore_start CPU_Core_Normal_Start
#else
#define realcore_start CPU_Core_Full_Start
#define pmodecore_start CPU_Core_Full_Start
#endif
void CPU_Push16(Bitu value) {
reg_esp-=2;
mem_writew(SegPhys(ss) + (reg_esp & cpu.stack.mask) ,value);
}
void CPU_Push32(Bitu value) {
reg_esp-=4;
mem_writed(SegPhys(ss) + (reg_esp & cpu.stack.mask) ,value);
}
Bitu CPU_Pop16(void) {
Bitu val=mem_readw(SegPhys(ss) + (reg_esp & cpu.stack.mask));
reg_esp+=2;
return val;
}
Bitu CPU_Pop32(void) {
Bitu val=mem_readd(SegPhys(ss) + (reg_esp & cpu.stack.mask));
reg_esp+=4;
return val;
}
PhysPt SelBase(Bitu sel) {
if (cpu.cr0 & CR0_PROTECTION) {
Descriptor desc;
cpu.gdt.GetDescriptor(sel,desc);
return desc.GetBase();
} else {
return sel<<4;
}
}
void CPU_SetFlags(Bitu word) {
reg_flags=(word|2)&~0x28;
}
Bit8u lastint;
void CPU_Exception(Bitu num,Bitu error_code) {
CPU_Interrupt(num,0,0);
}
void CPU_Interrupt(Bitu num,Bitu error_code,Bitu type) {
lastint=num;
#if C_DEBUG
switch (num) {
case 0xcd:
#if C_HEAVY_DEBUG
LOG(LOG_CPU,LOG_ERROR)("Call to interrupt 0xCD this is BAD");
DEBUG_HeavyWriteLogInstruction();
#endif
E_Exit("Call to interrupt 0xCD this is BAD");
case 0x03:
if (DEBUG_Breakpoint()) {
CPU_Cycles=0;
return;
}
};
#endif
if (!cpu.pmode) {
/* Save everything on a 16-bit stack */
CPU_Push16(reg_flags & 0xffff);
CPU_Push16(SegValue(cs));
CPU_Push16(reg_ip);
SETFLAGBIT(IF,false);
SETFLAGBIT(TF,false);
/* Get the new CS:IP from vector table */
reg_eip=mem_readw(num << 2);
Segs.val[cs]=mem_readw((num << 2)+2);
Segs.phys[cs]=Segs.val[cs]<<4;
cpu.code.big=false;
return;
} else {
/* Protected Mode Interrupt */
Descriptor gate;
//TODO Check for software interrupt and check gate's dpl<cpl
cpu.idt.GetDescriptor(num<<3,gate);
if (gate.DPL()<cpu.cpl) E_Exit("INT:Gate DPL<CPL");
switch (gate.Type()) {
case DESC_286_INT_GATE:
case DESC_386_INT_GATE:
case DESC_286_TRAP_GATE:
case DESC_386_TRAP_GATE:
{
Descriptor desc;
Bitu selector=gate.GetSelector();
Bitu offset=gate.GetOffset();
cpu.gdt.GetDescriptor(selector,desc);
Bitu dpl=desc.DPL();
if (dpl>cpu.cpl) E_Exit("Interrupt to higher privilege");
switch (desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (dpl<cpu.cpl) {
/* Prepare for gate to lower privilege */
E_Exit("Interrupt to lower privilege");
break;
}
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
/* Prepare stack for gate to same priviledge */
if (gate.Type() & 0x8) { /* 32-bit Gate */
CPU_Push32(reg_flags);
CPU_Push32(SegValue(cs));
CPU_Push32(reg_eip);
} else { /* 16-bit gate */
CPU_Push16(reg_flags & 0xffff);
CPU_Push16(SegValue(cs));
CPU_Push16(reg_ip);
}
break;
default:
E_Exit("INT:Gate Selector points to illegal descriptor with type %x",desc.Type());
}
if (!(gate.Type()&1)) SETFLAGBIT(IF,false);
SETFLAGBIT(TF,false);
SETFLAGBIT(NT,false);
Segs.val[cs]=(selector&0xfffc) | cpu.cpl;
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
LOG(LOG_CPU,LOG_NORMAL)("INT:Gate to %X:%X big %d %s",selector,reg_eip,desc.Big(),gate.Type() & 0x8 ? "386" : "286");
reg_eip=offset;
return;
}
default:
E_Exit("Illegal descriptor type %X for int %X",gate.Type(),num);
}
}
assert(1);
}
void CPU_IRET(bool use32) {
if (!cpu.pmode || cpu.v86) { /* RealMode IRET */
if (use32) {
reg_eip=CPU_Pop32();
SegSet16(cs,CPU_Pop32());
CPU_SetFlags(CPU_Pop32());
} else {
reg_eip=CPU_Pop16();
SegSet16(cs,CPU_Pop16());
CPU_SetFlagsw(CPU_Pop16());
}
cpu.code.big=false;
return;
} else { /* Protected mode IRET */
/* Check if this is task IRET */
if (GETFLAG(NT)) {
if (GETFLAG(VM)) E_Exit("Pmode IRET with VM bit set");
E_Exit("Task IRET");
}
Bitu selector,offset,old_flags;
if (use32) {
offset=CPU_Pop32();
selector=CPU_Pop32() & 0xffff;
old_flags=CPU_Pop32();
if (old_flags & FLAG_VM) E_Exit("No vm86 support");
} else {
offset=CPU_Pop16();
selector=CPU_Pop16();
old_flags=(reg_flags & 0xffff0000) | CPU_Pop16();
}
Bitu rpl=selector & 3;
Descriptor desc;
cpu.gdt.GetDescriptor(selector,desc);
if (rpl<cpu.cpl)
E_Exit("IRET to lower privilege");
if (cpu.cpl==rpl) {
/* Return to same level */
switch (desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (!(cpu.cpl==desc.DPL())) E_Exit("IRET:Same Level:NC:DPL!=CPL");
break;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
if (!(desc.DPL()>=cpu.cpl)) E_Exit("IRET:Same level:C:DPL<CPL");
break;
default:
E_Exit("IRET from illegal descriptor type %X",desc.Type());
}
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=(selector & 0xfffc) | cpu.cpl;;
reg_eip=offset;
CPU_SetFlags(old_flags);
LOG(LOG_CPU,LOG_NORMAL)("IRET:Same level return to %X:%X big %d",selector,offset,cpu.code.big);
} else {
/* Return to higher privilege */
switch (desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (!(cpu.cpl==rpl)) E_Exit("IRET:Outer level:NC:RPL != DPL");
break;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
if (!(desc.DPL()>cpu.cpl)) E_Exit("IRET:Outer level:C:DPL <= CPL");
break;
default:
E_Exit("IRET from illegal descriptor type %X",desc.Type());
}
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=selector;
cpu.cpl=rpl;
reg_eip=offset;
Bitu new_ss,new_esp;
if (use32) {
new_esp=CPU_Pop32();
new_ss=CPU_Pop32() & 0xffff;
} else {
new_esp=CPU_Pop16();
new_ss=CPU_Pop16();
}
reg_esp=new_esp;
CPU_SetSegGeneral(ss,new_ss);
//TODO Maybe validate other segments, but why would anyone use them?
LOG(LOG_CPU,LOG_NORMAL)("IRET:Outer level return to %X:X big %d",selector,offset,cpu.code.big);
}
return;
}
}
void CPU_JMP(bool use32,Bitu selector,Bitu offset) {
if (!cpu.pmode || cpu.v86) {
if (!use32) {
reg_eip=offset&0xffff;
} else {
reg_eip=offset;
}
SegSet16(cs,selector);
cpu.code.big=false;
return;
} else {
Bitu rpl=selector & 3;
Descriptor desc;
cpu.gdt.GetDescriptor(selector,desc);
switch (desc.Type()) {
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (rpl>cpu.cpl) E_Exit("JMP:NC:RPL>CPL");
if (rpl!=desc.DPL()) E_Exit("JMP:NC:RPL != DPL");
cpu.cpl=desc.DPL();
LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:NC to %X:%X big %d",selector,offset,desc.Big());
goto CODE_jmp;
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
LOG(LOG_CPU,LOG_NORMAL)("JMP:Code:C to %X:%X big %d",selector,offset,desc.Big());
CODE_jmp:
/* Normal jump to another selector:offset */
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=(selector & 0xfffc) | cpu.cpl;
reg_eip=offset;
return;
default:
E_Exit("JMP Illegal descriptor type %X",desc.Type());
}
}
assert(1);
}
void CPU_CALL(bool use32,Bitu selector,Bitu offset) {
if (!cpu.pmode || cpu.v86) {
if (!use32) {
CPU_Push16(SegValue(cs));
CPU_Push16(reg_ip);
reg_eip=offset&0xffff;
} else {
CPU_Push32(SegValue(cs));
CPU_Push32(reg_eip);
reg_eip=offset;
}
cpu.code.big=false;
SegSet16(cs,selector);
return;
} else {
Descriptor call;
Bitu rpl=selector & 3;
cpu.gdt.GetDescriptor(selector,call);
/* Check for type of far call */
switch (call.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
if (rpl>cpu.cpl) E_Exit("CALL:CODE:NC:RPL>CPL");
if (call.DPL()!=cpu.cpl) E_Exit("CALL:CODE:NC:DPL!=CPL");
LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:NC to %X:%X",selector,offset);
goto call_code;
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
if (call.DPL()>cpu.cpl) E_Exit("CALL:CODE:C:DPL>CPL");
LOG(LOG_CPU,LOG_NORMAL)("CALL:CODE:C to %X:%X",selector,offset);
call_code:
if (!use32) {
CPU_Push16(SegValue(cs));
CPU_Push16(reg_ip);
reg_eip=offset&0xffff;
} else {
CPU_Push32(SegValue(cs));
CPU_Push32(reg_eip);
reg_eip=offset;
}
Segs.phys[cs]=call.GetBase();
cpu.code.big=call.Big()>0;
Segs.val[cs]=(selector & 0xfffc) | cpu.cpl;
reg_eip=offset;
return;
case DESC_286_CALL_GATE: {
if (call.DPL()<cpu.cpl) E_Exit("286 Call Gate: Gate DPL<CPL");
if (call.DPL()<rpl) E_Exit("286 Call Gate: Gate DPL<RPL");
Descriptor code;
if (!cpu.gdt.GetDescriptor(call.GetSelector(),code)) E_Exit("286 Call Gate: Invalid code segment.");
Bitu seldpl = code.DPL();
if (seldpl<cpu.cpl) {
// higher privilidge level
// Get new SS selector for new privilege level from TSS
// We dont have a TSS now, so we <20>simply use our existing stack...
// 1. Load new SS:eSP value from TSS
// 2. Load new CS:EIP value from gate
Bitu newcs = call.GetSelector();
Bitu neweip = call.GetOffset();
Bitu newcpl = seldpl;
Bitu oldcs = SegValue(cs);
Bitu oldip = reg_ip;
// 3. Load CS descriptor (Set RPL of CS to CPL)
Segs.phys[cs] = code.GetBase();
cpu.code.big = code.Big()>0;
reg_eip = neweip;
// Set CPL to stack segment DPL
// Set RPL of CS to CPL
cpu.cpl = newcpl;
Segs.val[cs] = (newcs & 0xfffc) | newcpl;
// 4. Load SS descriptor
// 5. Push long pointer of old stack onto new stack
Bitu oldsp = reg_sp;
CPU_Push16(SegValue(ss));
CPU_Push16(oldsp);
// 6. Get word count from call gate, mask to 5 bits
Bitu wordCount = call.saved.gate.paramcount;
if (wordCount>0) LOG(LOG_CPU,LOG_NORMAL)("CPU: Callgate 286 wordcount : %d)",wordCount);
// 7. Copy parameters from old stack onto new stack
while (wordCount>0) {
CPU_Push16(mem_readw(SegPhys(ss)+oldsp));
oldsp += 2; wordCount--;
}
// Push return address onto new stack
CPU_Push16(oldcs);
CPU_Push16(oldip);
// LOG(LOG_MISC,LOG_ERROR)("CPU: Callgate (Higher) %04X:%04X",newcs,neweip);
return;
} else {
// same privilidge level
Bitu oldcs = SegValue(cs);
Bitu oldip = reg_ip;
Bitu newcs = call.GetSelector() | 3;
Bitu neweip = call.GetOffset();
// 3. Load CS descriptor (Set RPL of CS to CPL)
Descriptor code2;
if (!cpu.gdt.GetDescriptor(newcs,code2)) E_Exit("286 Call Gate: Invalid code segment.");
Segs.phys[cs] = code.GetBase();
cpu.code.big = code.Big()>0;
// Set RPL of CS to CPL
cpu.cpl = seldpl;
Segs.val[cs] = (newcs & 0xfffc) | seldpl;
reg_eip = neweip;
// Push return address onto new stack
CPU_Push16(oldcs);
CPU_Push16(oldip);
// LOG(LOG_MISC,LOG_ERROR)("CPU: Callgate (Same) %04X:%04X",newcs,neweip);
return;
}; break;
};
default:
E_Exit("CALL:Descriptor type %x unsupported",call.Type());
}
}
assert(1);
}
void CPU_RET(bool use32,Bitu bytes) {
if (!cpu.pmode || cpu.v86) {
Bitu new_ip,new_cs;
if (!use32) {
new_ip=CPU_Pop16();
new_cs=CPU_Pop16();
} else {
new_ip=CPU_Pop32();
new_cs=CPU_Pop32() & 0xffff;
}
reg_esp+=bytes;
SegSet16(cs,new_cs);
reg_eip=new_ip;
cpu.code.big=false;
return;
} else {
Bitu offset,selector;
if (!use32) {
offset=CPU_Pop16();
selector=CPU_Pop16();
} else {
offset=CPU_Pop32();
selector=CPU_Pop32() & 0xffff;
}
if (cpu.stack.big) {
reg_esp+=bytes;
} else {
reg_sp+=bytes;
}
Descriptor desc;
Bitu rpl=selector & 3;
if (rpl<cpu.cpl) E_Exit("RET to lower privilege");
cpu.gdt.GetDescriptor(selector,desc);
if (cpu.cpl==rpl) {
/* Return to same level */
switch (desc.Type()) {
case DESC_CODE_N_NC_A:case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A:case DESC_CODE_R_NC_NA:
if (!(cpu.cpl==desc.DPL())) E_Exit("RET to NC segment of other privilege");
goto RET_same_level;
case DESC_CODE_N_C_A:case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A:case DESC_CODE_R_C_NA:
if (!(desc.DPL()>=cpu.cpl)) E_Exit("RET to C segment of higher privilege");
break;
default:
E_Exit("RET from illegal descriptor type %X",desc.Type());
}
RET_same_level:
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=selector;
reg_eip=offset;
LOG(LOG_CPU,LOG_NORMAL)("RET - Same level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL());
return;
} else {
/* Return to higher level */
Bitu newsp = CPU_Pop16();
Bitu newss = CPU_Pop16();
cpu.cpl = rpl;
CPU_SetSegGeneral(ss,newss);
reg_esp = newsp;
Segs.phys[cs]=desc.GetBase();
cpu.code.big=desc.Big()>0;
Segs.val[cs]=selector;
reg_eip=offset;
// LOG(LOG_MISC,LOG_ERROR)("RET - Higher level to %X:%X RPL %X DPL %X",selector,offset,rpl,desc.DPL());
return;
}
LOG(LOG_CPU,LOG_NORMAL)("Prot ret %X:%X",selector,offset);
return;
}
assert(1);
}
void CPU_SLDT(Bitu & selector) {
selector=cpu.gdt.SLDT();
}
Bitu tr=0;
void CPU_LLDT(Bitu selector) {
cpu.gdt.LLDT(selector);
LOG(LOG_CPU,LOG_NORMAL)("LDT Set to %X",selector);
}
void CPU_STR(Bitu & selector) {
selector=tr;
}
void CPU_LTR(Bitu selector) {
tr=selector;
LOG(LOG_CPU,LOG_NORMAL)("TR Set to %X",selector);
}
void CPU_LGDT(Bitu limit,Bitu base) {
LOG(LOG_CPU,LOG_NORMAL)("GDT Set to base:%X limit:%X",base,limit);
cpu.gdt.SetLimit(limit);
cpu.gdt.SetBase(base);
}
void CPU_LIDT(Bitu limit,Bitu base) {
LOG(LOG_CPU,LOG_NORMAL)("IDT Set to base:%X limit:%X",base,limit);
cpu.idt.SetLimit(limit);
cpu.idt.SetBase(base);
}
void CPU_SGDT(Bitu & limit,Bitu & base) {
limit=cpu.gdt.GetLimit();
base=cpu.gdt.GetBase();
}
void CPU_SIDT(Bitu & limit,Bitu & base) {
limit=cpu.idt.GetLimit();
base=cpu.idt.GetBase();
}
bool CPU_SET_CRX(Bitu cr,Bitu value) {
switch (cr) {
case 0:
{
Bitu changed=cpu.cr0 ^ value;
if (!changed) return true;
cpu.cr0=value;
//TODO Maybe always first change to core_full for a change to cr0
if (value & CR0_PROTECTION) {
cpu.pmode=true;
LOG(LOG_CPU,LOG_NORMAL)("Protected mode");
PAGING_Enable((value & CR0_PAGING)>0);
} else {
cpu.pmode=false;
PAGING_Enable(false);
LOG(LOG_CPU,LOG_NORMAL)("Real mode");
}
return false; //Only changes with next CS change
}
case 3:
PAGING_SetDirBase(value);
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV CR%d,%X",cr,value);
break;
}
return false;
}
Bitu CPU_GET_CRX(Bitu cr) {
switch (cr) {
case 0:
return cpu.cr0;
case 3:
return PAGING_GetDirBase();
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled MOV XXX, CR%d",cr);
break;
}
return 0;
}
void CPU_SMSW(Bitu & word) {
word=cpu.cr0;
}
bool CPU_LMSW(Bitu word) {
word&=0xffff;
word|=(cpu.cr0&0xffff0000);
return CPU_SET_CRX(0,word);
}
void CPU_ARPL(Bitu & dest_sel,Bitu src_sel) {
if ((dest_sel & 3) < (src_sel & 3)) {
dest_sel=(dest_sel & 0xfffc) + (src_sel & 3);
// dest_sel|=0xff3f0000;
SETFLAGBIT(ZF,true);
} else {
SETFLAGBIT(ZF,false);
}
}
void CPU_LAR(Bitu selector,Bitu & ar) {
Descriptor desc;Bitu rpl=selector & 3;
ar=0;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
if (!desc.saved.seg.p) {
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
break;
case DESC_LDT:
case DESC_TASK_GATE:
case DESC_286_TSS_A: case DESC_286_TSS_B:
case DESC_286_INT_GATE: case DESC_286_TRAP_GATE:
case DESC_286_CALL_GATE:
case DESC_386_TSS_A: case DESC_386_TSS_B:
case DESC_386_INT_GATE: case DESC_386_TRAP_GATE:
case DESC_386_CALL_GATE:
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
/* Valid descriptor */
ar=desc.saved.fill[1] & 0x00ffff00;
SETFLAGBIT(ZF,true);
}
void CPU_LSL(Bitu selector,Bitu & limit) {
Descriptor desc;Bitu rpl=selector & 3;
limit=0;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
if (!desc.saved.seg.p) {
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_N_C_A: case DESC_CODE_N_C_NA:
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
break;
case DESC_LDT:
case DESC_286_TSS_A:
case DESC_286_TSS_B:
case DESC_386_TSS_A:
case DESC_386_TSS_B:
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_N_NC_A: case DESC_CODE_N_NC_NA:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
limit=desc.GetLimit();
SETFLAGBIT(ZF,true);
}
void CPU_VERR(Bitu selector) {
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
if (!desc.saved.seg.p) {
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_CODE_R_C_A: case DESC_CODE_R_C_NA:
//Conforming readable code segments can be always read
break;
case DESC_DATA_EU_RO_NA: case DESC_DATA_EU_RO_A:
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RO_NA: case DESC_DATA_ED_RO_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
case DESC_CODE_R_NC_A: case DESC_CODE_R_NC_NA:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
SETFLAGBIT(ZF,true);
}
void CPU_VERW(Bitu selector) {
Descriptor desc;Bitu rpl=selector & 3;
if (!cpu.gdt.GetDescriptor(selector,desc)){
SETFLAGBIT(ZF,false);
return;
}
if (!desc.saved.seg.p) {
SETFLAGBIT(ZF,false);
return;
}
switch (desc.Type()){
case DESC_DATA_EU_RW_NA: case DESC_DATA_EU_RW_A:
case DESC_DATA_ED_RW_NA: case DESC_DATA_ED_RW_A:
if (desc.DPL()<cpu.cpl || desc.DPL() < rpl) {
SETFLAGBIT(ZF,false);
return;
}
break;
default:
SETFLAGBIT(ZF,false);
return;
}
SETFLAGBIT(ZF,true);
}
void CPU_SetSegGeneral(SegNames seg,Bitu value) {
Segs.val[seg]=value;
if (!cpu.pmode || cpu.v86) {
Segs.phys[seg]=value << 4;
//TODO maybe just always do this when they enable/real/v86 mode
if (seg==ss) {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
}
} else {
Descriptor desc;
cpu.gdt.GetDescriptor(value,desc);
Segs.phys[seg]=desc.GetBase();
if (seg==ss) {
if (desc.Big()) {
cpu.stack.big=true;
cpu.stack.mask=0xffffffff;
} else {
cpu.stack.big=false;
cpu.stack.mask=0xffff;
}
}
}
}
void CPU_CPUID(void) {
switch (reg_eax) {
case 0: /* Vendor ID String and maximum level? */
reg_eax=0;
reg_ebx=('G'<< 24) || ('e' << 16) || ('n' << 8) || 'u';
reg_edx=('i'<< 24) || ('n' << 16) || ('e' << 8) || 'T';
reg_ecx=('n'<< 24) || ('t' << 16) || ('e' << 8) || 'l';
break;
case 1: /* get processor type/family/model/stepping and feature flags */
reg_eax=0x402; /* intel 486 sx? */
reg_ebx=0; /* Not Supported */
reg_ecx=0; /* No features */
reg_edx=0; /* Nothing either */
break;
default:
LOG(LOG_CPU,LOG_ERROR)("Unhandled CPUID Function %x",reg_eax);
break;
}
}
void CPU_ReadTaskSeg32(PhysPt base,TaskSegment_32 * seg) {
seg->back =mem_readw(base+offsetof(TSS_386,back ));
seg->esp0 =mem_readd(base+offsetof(TSS_386,esp0 ));
seg->ss0 =mem_readw(base+offsetof(TSS_386,ss0 ));
seg->esp1 =mem_readd(base+offsetof(TSS_386,esp1 ));
seg->ss1 =mem_readw(base+offsetof(TSS_386,ss1 ));
seg->esp2 =mem_readd(base+offsetof(TSS_386,esp2 ));
seg->ss2 =mem_readw(base+offsetof(TSS_386,ss2 ));
seg->cr3 =mem_readd(base+offsetof(TSS_386,cr3 ));
seg->eflags =mem_readd(base+offsetof(TSS_386,eflags ));
seg->eip =mem_readd(base+offsetof(TSS_386,eip ));
seg->eax =mem_readd(base+offsetof(TSS_386,eax ));
seg->ecx =mem_readd(base+offsetof(TSS_386,ecx ));
seg->edx =mem_readd(base+offsetof(TSS_386,edx ));
seg->ebx =mem_readd(base+offsetof(TSS_386,ebx ));
seg->esp =mem_readd(base+offsetof(TSS_386,esp ));
seg->ebp =mem_readd(base+offsetof(TSS_386,ebp ));
seg->esi =mem_readd(base+offsetof(TSS_386,esi ));
seg->edi =mem_readd(base+offsetof(TSS_386,edi ));
seg->es =mem_readw(base+offsetof(TSS_386,es ));
seg->cs =mem_readw(base+offsetof(TSS_386,cs ));
seg->ss =mem_readw(base+offsetof(TSS_386,ss ));
seg->ds =mem_readw(base+offsetof(TSS_386,ds ));
seg->fs =mem_readw(base+offsetof(TSS_386,fs ));
seg->gs =mem_readw(base+offsetof(TSS_386,gs ));
seg->ldt =mem_readw(base+offsetof(TSS_386,ldt ));
seg->trap =mem_readw(base+offsetof(TSS_386,trap ));
seg->io =mem_readw(base+offsetof(TSS_386,io ));
}
static Bits HLT_Decode(void) {
/* Once an interrupt occurs, it should change cpu core */
if (reg_eip!=cpu.hlt.eip || SegValue(cs) != cpu.hlt.cs) {
cpudecoder=cpu.hlt.old_decoder;
} else {
CPU_Cycles=0;
}
return 0;
}
void CPU_HLT(void) {
CPU_Cycles=0;
cpu.hlt.cs=SegValue(cs);
cpu.hlt.eip=reg_eip;
cpu.hlt.old_decoder=cpudecoder;
cpudecoder=&HLT_Decode;
}
extern void GFX_SetTitle(Bits cycles ,Bits frameskip);
static void CPU_CycleIncrease(void) {
Bits old_cycles=CPU_CycleMax;
CPU_CycleMax=(Bits)(CPU_CycleMax*1.2);
CPU_CycleLeft=0;CPU_Cycles=0;
if (CPU_CycleMax==old_cycles) CPU_CycleMax++;
LOG_MSG("CPU:%d cycles",CPU_CycleMax);
GFX_SetTitle(CPU_CycleMax,-1);
}
static void CPU_CycleDecrease(void) {
CPU_CycleMax=(Bits)(CPU_CycleMax/1.2);
CPU_CycleLeft=0;CPU_Cycles=0;
if (!CPU_CycleMax) CPU_CycleMax=1;
LOG_MSG("CPU:%d cycles",CPU_CycleMax);
GFX_SetTitle(CPU_CycleMax,-1);
}
void CPU_Init(Section* sec) {
Section_prop * section=static_cast<Section_prop *>(sec);
reg_eax=0;
reg_ebx=0;
reg_ecx=0;
reg_edx=0;
reg_edi=0;
reg_esi=0;
reg_ebp=0;
reg_esp=0;
SegSet16(cs,0);
SegSet16(ds,0);
SegSet16(es,0);
SegSet16(fs,0);
SegSet16(gs,0);
SegSet16(ss,0);
reg_eip=0;
CPU_SetFlags(FLAG_IF); //Enable interrupts
cpu.cr0=0xffffffff;
CPU_SET_CRX(0,0); //Initialize
cpu.v86=false;
cpu.code.big=false;
cpu.stack.mask=0xffff;
cpu.stack.big=false;
realcore_start(false);
CPU_JMP(false,0,0); //Setup the first cpu core
KEYBOARD_AddEvent(KBD_f11,KBD_MOD_CTRL,CPU_CycleDecrease);
KEYBOARD_AddEvent(KBD_f12,KBD_MOD_CTRL,CPU_CycleIncrease);
CPU_Cycles=0;
CPU_CycleMax=section->Get_int("cycles");;
if (!CPU_CycleMax) CPU_CycleMax=1500;
CPU_CycleLeft=0;
GFX_SetTitle(CPU_CycleMax,-1);
}