Redesign lib public interface

This commit is contained in:
Alex Page 2023-06-23 16:57:12 -04:00
parent 83bfa98a38
commit 61d875757d
7 changed files with 603 additions and 562 deletions

View file

@ -2,24 +2,20 @@ use std::{fs::File, io::BufReader, path::Path};
use anyhow::{anyhow, Result};
use clap::Parser;
use openssl::{
bn::{BigNum, MsbOption},
ec::{EcGroup, EcPoint},
rand::rand_bytes,
};
use serde_json::{from_reader, from_str};
use umskt::{
bink1998, bink2002, confid, crypto::initialize_elliptic_curve, key::P_KEY_CHARSET, PK_LENGTH,
bink1998, bink2002, confid,
crypto::{EllipticCurve, PrivateKey},
};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Mode {
Bink1998Generate,
Bink2002Generate,
ConfirmationId,
Bink1998Validate,
Bink2002Validate,
ConfirmationId,
}
impl Default for Mode {
@ -37,7 +33,7 @@ pub struct Options {
/// Number of keys to generate
#[arg(short = 'n', long = "number", default_value = "1")]
num_keys: i32,
num_keys: u64,
/// Specify which keys file to load
#[arg(short = 'f', long = "file")]
@ -69,12 +65,15 @@ pub struct Options {
pub struct Cli {
options: Options,
private_key: BigNum,
gen_order: BigNum,
gen_point: EcPoint,
pub_point: EcPoint,
e_curve: EcGroup,
count: u32,
p: String,
a: String,
b: String,
gx: String,
gy: String,
kx: String,
ky: String,
n: String,
k: String,
}
impl Cli {
@ -85,11 +84,11 @@ impl Cli {
let bink = &keys["BINK"][&options.binkid];
// We cannot produce a valid key without knowing the private key k. The reason for this is that
// we need the result of the function K(x; y) = kG(x; y).
let private_key = BigNum::from_dec_str(bink["priv"].as_str().unwrap()).unwrap();
let private_key = bink["priv"].as_str().unwrap();
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
let gen_order = BigNum::from_dec_str(bink["n"].as_str().unwrap()).unwrap();
let gen_order = bink["n"].as_str().unwrap();
let p = bink["p"].as_str().unwrap();
let a = bink["a"].as_str().unwrap();
@ -98,8 +97,6 @@ impl Cli {
let gy = bink["g"]["y"].as_str().unwrap();
let kx = bink["pub"]["x"].as_str().unwrap();
let ky = bink["pub"]["y"].as_str().unwrap();
let n = bink["n"].as_str().unwrap();
let k = bink["priv"].as_str().unwrap();
if options.verbose {
println!("-----------------------------------------------------------");
@ -115,21 +112,22 @@ impl Cli {
println!("Gy: {gy}");
println!("Kx: {kx}");
println!("Ky: {ky}");
println!(" n: {n}");
println!(" k: {k}");
println!(" n: {gen_order}");
println!(" k: {private_key}");
println!();
}
let (e_curve, gen_point, pub_point) = initialize_elliptic_curve(p, a, b, gx, gy, kx, ky);
Ok(Self {
options,
private_key,
gen_order,
gen_point,
pub_point,
e_curve,
count: 0,
p: p.to_owned(),
a: a.to_owned(),
b: b.to_owned(),
gx: gx.to_owned(),
gy: gy.to_owned(),
kx: kx.to_owned(),
ky: ky.to_owned(),
n: gen_order.to_owned(),
k: private_key.to_owned(),
})
}
@ -205,134 +203,71 @@ impl Cli {
match self.options.application_mode {
Mode::Bink1998Generate => self.bink1998_generate(),
Mode::Bink2002Generate => self.bink2002_generate(),
Mode::ConfirmationId => self.confirmation_id(),
Mode::Bink1998Validate => self.bink1998_validate(),
Mode::Bink2002Validate => self.bink2002_validate(),
Mode::ConfirmationId => self.confirmation_id(),
}
}
fn bink1998_generate(&mut self) -> Result<()> {
let mut n_raw = self.options.channel_id * 1_000_000; // <- change
let mut bn_rand = BigNum::new()?;
bn_rand.rand(19, MsbOption::MAYBE_ZERO, false)?;
let o_raw: u32 = u32::from_be_bytes(bn_rand.to_vec_padded(4)?.try_into().unwrap());
n_raw += o_raw % 999999;
if self.options.verbose {
println!("> PID: {n_raw:09}");
}
let private_key = &self.gen_order - &self.private_key;
let upgrade = false;
let curve = EllipticCurve::new(
&self.p, &self.a, &self.b, &self.gx, &self.gy, &self.kx, &self.ky,
)?;
let private_key = PrivateKey::new(&self.n, &self.k)?;
for _ in 0..self.options.num_keys {
let p_key = bink1998::generate(
&self.e_curve,
&self.gen_point,
&self.gen_order,
let product_key = bink1998::ProductKey::new(
&curve,
&private_key,
n_raw,
upgrade,
self.options.channel_id,
None,
None,
)?;
Cli::print_key(&p_key);
if bink1998::verify(
&self.e_curve,
&self.gen_point,
&self.pub_point,
&p_key,
self.options.verbose,
)? {
self.count += 1;
}
println!("{product_key}");
}
println!("Success count: {}/{}", self.count, self.options.num_keys);
Ok(())
}
fn bink2002_generate(&mut self) -> Result<()> {
let p_channel_id = self.options.channel_id;
if self.options.verbose {
println!("> Channel ID: {p_channel_id:03}");
}
let curve = EllipticCurve::new(
&self.p, &self.a, &self.b, &self.gx, &self.gy, &self.kx, &self.ky,
)?;
let private_key = PrivateKey::new(&self.n, &self.k)?;
for _ in 0..self.options.num_keys {
let mut p_auth_info_bytes = [0_u8; 4];
rand_bytes(&mut p_auth_info_bytes)?;
let p_auth_info = u32::from_ne_bytes(p_auth_info_bytes) & ((1 << 10) - 1);
if self.options.verbose {
println!("> AuthInfo: {p_auth_info}");
}
let p_key = bink2002::generate(
&self.e_curve,
&self.gen_point,
&self.gen_order,
&self.private_key,
p_channel_id,
p_auth_info,
false,
let product_key = bink2002::ProductKey::new(
&curve,
&private_key,
self.options.channel_id,
None,
None,
None,
)?;
Cli::print_key(&p_key);
println!("\n");
if bink2002::verify(
&self.e_curve,
&self.gen_point,
&self.pub_point,
&p_key,
self.options.verbose,
)? {
self.count += 1;
}
println!("{product_key}");
}
println!("Success count: {}/{}", self.count, self.options.num_keys);
Ok(())
}
fn bink1998_validate(&mut self) -> Result<()> {
let Ok(key) = Self::strip_key(self.options.key_to_check.as_ref().unwrap()) else {
return Err(anyhow!("Product key is in an incorrect format!"));
};
Self::print_key(&key);
if !bink1998::verify(
&self.e_curve,
&self.gen_point,
&self.pub_point,
&key,
self.options.verbose,
)? {
return Err(anyhow!("Product key is invalid! Wrong BINK ID?"));
}
let curve = EllipticCurve::new(
&self.p, &self.a, &self.b, &self.gx, &self.gy, &self.kx, &self.ky,
)?;
let product_key =
bink1998::ProductKey::from_key(&curve, self.options.key_to_check.as_ref().unwrap())?;
println!("{product_key}");
println!("Key validated successfully!");
Ok(())
}
fn bink2002_validate(&mut self) -> Result<()> {
let Ok(key) = Self::strip_key(self.options.key_to_check.as_ref().unwrap()) else {
return Err(anyhow!("Product key is in an incorrect format!"));
};
Self::print_key(&key);
if !bink2002::verify(
&self.e_curve,
&self.gen_point,
&self.pub_point,
&key,
self.options.verbose,
)? {
return Err(anyhow!("Product key is invalid! Wrong BINK ID?"));
}
let curve = EllipticCurve::new(
&self.p, &self.a, &self.b, &self.gx, &self.gy, &self.kx, &self.ky,
)?;
let product_key =
bink2002::ProductKey::from_key(&curve, self.options.key_to_check.as_ref().unwrap())?;
println!("{product_key}");
println!("Key validated successfully!");
Ok(())
}
@ -344,39 +279,4 @@ impl Cli {
};
Ok(())
}
fn print_key(pk: &str) {
assert!(pk.len() >= PK_LENGTH);
println!(
"{}",
pk.chars()
.enumerate()
.fold(String::new(), |mut acc: String, (i, c)| {
if i > 0 && i % 5 == 0 {
acc.push('-');
}
acc.push(c);
acc
})
);
}
fn strip_key(in_key: &str) -> Result<String> {
let out_key: String = in_key
.chars()
.filter_map(|c| {
let c = c.to_ascii_uppercase();
if P_KEY_CHARSET.into_iter().any(|x| x == c) {
Some(c)
} else {
None
}
})
.collect();
if out_key.len() == PK_LENGTH {
Ok(out_key)
} else {
Err(anyhow!("Invalid key length"))
}
}
}

View file

@ -1,4 +1,6 @@
use anyhow::Result;
use std::fmt::{Display, Formatter};
use anyhow::{bail, Result};
use bitreader::BitReader;
use openssl::{
bn::{BigNum, BigNumContext, MsbOption},
@ -7,112 +9,171 @@ use openssl::{
};
use crate::{
crypto::bitmask,
key::{base24_decode, base24_encode},
crypto::{EllipticCurve, PrivateKey},
key::{base24_decode, base24_encode, strip_key},
math::bitmask,
};
const FIELD_BITS: i32 = 384;
const FIELD_BYTES: usize = 48;
const SHA_MSG_LENGTH: usize = 4 + 2 * FIELD_BYTES;
#[derive(Clone, Copy, Debug)]
struct ProductKey {
const HASH_LENGTH_BITS: u8 = 28;
const SERIAL_LENGTH_BITS: u8 = 30;
const UPGRADE_LENGTH_BITS: u8 = 1;
const EVERYTHING_ELSE: u8 = HASH_LENGTH_BITS + SERIAL_LENGTH_BITS + UPGRADE_LENGTH_BITS;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ProductKey {
upgrade: bool,
serial: u32,
hash: u32,
signature: u64,
}
pub fn verify(
e_curve: &EcGroup,
base_point: &EcPoint,
public_key: &EcPoint,
p_key: &str,
verbose: bool,
) -> Result<bool> {
let mut num_context = BigNumContext::new()?;
impl ProductKey {
pub fn new(
curve: &EllipticCurve,
private_key: &PrivateKey,
channel_id: u32,
sequence: Option<u32>,
upgrade: Option<bool>,
) -> Result<Self> {
// Generate random sequence if none supplied
let sequence = match sequence {
Some(serial) => serial,
None => {
let mut bn_rand = BigNum::new()?;
bn_rand.rand(19, MsbOption::MAYBE_ZERO, false)?;
let o_raw = u32::from_be_bytes(bn_rand.to_vec_padded(4)?.try_into().unwrap());
o_raw % 999999
}
};
let p_raw = base24_decode(p_key);
let product_key = unpack(&p_raw)?;
// Default to upgrade=false
let upgrade = upgrade.unwrap_or(false);
let p_data = product_key.serial << 1 | product_key.upgrade as u32;
// Generate a new random key
let product_key = Self::generate(
&curve.curve,
&curve.gen_point,
&private_key.gen_order,
&private_key.private_key,
channel_id * 1_000_000 + sequence,
upgrade,
)?;
if verbose {
println!("Validation results:");
println!(" Upgrade: {}", product_key.upgrade);
println!(" Serial: {}", product_key.serial);
println!(" Hash: {}", product_key.hash);
println!(" Signature: {}", product_key.signature);
println!();
// Make sure the key is valid
product_key.verify(&curve.curve, &curve.gen_point, &curve.pub_point)?;
// Ship it
Ok(product_key)
}
let e = BigNum::from_u32(product_key.hash)?;
let s = BigNum::from_slice(&product_key.signature.to_be_bytes())?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
pub fn from_key(curve: &EllipticCurve, key: &str) -> Result<Self> {
let key = strip_key(key)?;
let Ok(p_raw) = base24_decode(&key) else {
bail!("Product key is in an incorrect format!")
};
let product_key = Self::from_packed(&p_raw)?;
product_key.verify(&curve.curve, &curve.gen_point, &curve.pub_point)?;
Ok(product_key)
}
let mut t = EcPoint::new(e_curve)?;
let mut p = EcPoint::new(e_curve)?;
let mut p_2 = EcPoint::new(e_curve)?;
fn generate(
e_curve: &EcGroup,
base_point: &EcPoint,
gen_order: &BigNum,
private_key: &BigNum,
p_serial: u32,
p_upgrade: bool,
) -> Result<Self> {
let mut num_context = BigNumContext::new().unwrap();
t.mul(e_curve, base_point, &s, &num_context)?;
p.mul(e_curve, public_key, &e, &num_context)?;
p_2.mul(e_curve, public_key, &e, &num_context)?;
let mut c = BigNum::new()?;
let mut s = BigNum::new()?;
let mut s_2 = BigNum::new()?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
p.add(e_curve, &t, &p_2, &mut num_context)?;
let p_data = p_serial << 1 | p_upgrade as u32;
p.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
let product_key = loop {
let mut r = EcPoint::new(e_curve)?;
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
// Generate a random number c consisting of 384 bits without any constraints.
c.rand(FIELD_BITS, MsbOption::MAYBE_ZERO, false)?;
let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?;
x_bin.reverse();
let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?;
y_bin.reverse();
// Pick a random derivative of the base point on the elliptic curve.
// R = cG;
r.mul(e_curve, base_point, &c, &num_context)?;
msg_buffer[0..4].copy_from_slice(&p_data.to_le_bytes());
msg_buffer[4..4 + FIELD_BYTES].copy_from_slice(&x_bin);
msg_buffer[4 + FIELD_BYTES..4 + FIELD_BYTES * 2].copy_from_slice(&y_bin);
// Acquire its coordinates.
// x = R.x; y = R.y;
r.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
let msg_digest = sha1(&msg_buffer);
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
let hash: u32 =
u32::from_le_bytes(msg_digest[0..4].try_into().unwrap()) >> 4 & bitmask(28) as u32;
let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?;
x_bin.reverse();
let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?;
y_bin.reverse();
Ok(hash == product_key.hash)
}
msg_buffer[0..4].copy_from_slice(&p_data.to_le_bytes());
msg_buffer[4..4 + FIELD_BYTES].copy_from_slice(&x_bin);
msg_buffer[4 + FIELD_BYTES..4 + FIELD_BYTES * 2].copy_from_slice(&y_bin);
pub fn generate(
e_curve: &EcGroup,
base_point: &EcPoint,
gen_order: &BigNum,
private_key: &BigNum,
p_serial: u32,
p_upgrade: bool,
) -> Result<String> {
let mut num_context = BigNumContext::new().unwrap();
let msg_digest = sha1(&msg_buffer);
let mut c = BigNum::new()?;
let mut s = BigNum::new()?;
let mut s_2 = BigNum::new()?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let p_hash: u32 =
u32::from_le_bytes(msg_digest[0..4].try_into().unwrap()) >> 4 & bitmask(28) as u32;
let p_data = p_serial << 1 | p_upgrade as u32;
s_2.copy_from_slice(&private_key.to_vec())?;
s_2.mul_word(p_hash)?;
let p_raw = loop {
let mut r = EcPoint::new(e_curve)?;
s.mod_add(&s_2, &c, gen_order, &mut num_context)?;
// Generate a random number c consisting of 384 bits without any constraints.
c.rand(FIELD_BITS, MsbOption::MAYBE_ZERO, false)?;
let p_signature = u64::from_be_bytes(s.to_vec_padded(8)?.try_into().unwrap());
// Pick a random derivative of the base point on the elliptic curve.
// R = cG;
r.mul(e_curve, base_point, &c, &num_context)?;
if p_signature <= bitmask(55) {
break Self {
upgrade: p_upgrade,
serial: p_serial,
hash: p_hash,
signature: p_signature,
};
}
};
// Acquire its coordinates.
// x = R.x; y = R.y;
r.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
Ok(product_key)
}
fn verify(
&self,
e_curve: &EcGroup,
base_point: &EcPoint,
public_key: &EcPoint,
) -> Result<bool> {
let mut num_context = BigNumContext::new()?;
let p_data = self.serial << 1 | self.upgrade as u32;
let e = BigNum::from_u32(self.hash)?;
let s = BigNum::from_slice(&self.signature.to_be_bytes())?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let mut t = EcPoint::new(e_curve)?;
let mut p = EcPoint::new(e_curve)?;
let mut p_2 = EcPoint::new(e_curve)?;
t.mul(e_curve, base_point, &s, &num_context)?;
p.mul(e_curve, public_key, &e, &num_context)?;
p_2.mul(e_curve, public_key, &e, &num_context)?;
p.add(e_curve, &t, &p_2, &mut num_context)?;
p.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
@ -127,65 +188,61 @@ pub fn generate(
let msg_digest = sha1(&msg_buffer);
let p_hash: u32 =
let hash: u32 =
u32::from_le_bytes(msg_digest[0..4].try_into().unwrap()) >> 4 & bitmask(28) as u32;
s_2.copy_from_slice(&private_key.to_vec())?;
s_2.mul_word(p_hash)?;
Ok(hash == self.hash)
}
s.mod_add(&s_2, &c, gen_order, &mut num_context)?;
fn from_packed(p_raw: &[u8]) -> Result<Self> {
let mut reader = BitReader::new(p_raw);
// The signature length is unknown, but everything else is, so we can calculate it
let signature_length_bits = (p_raw.len() * 8) as u8 - EVERYTHING_ELSE;
let p_signature = u64::from_be_bytes(s.to_vec_padded(8)?.try_into().unwrap());
let p_signature = reader.read_u64(signature_length_bits)?;
let p_hash = reader.read_u32(HASH_LENGTH_BITS)?;
let p_serial = reader.read_u32(SERIAL_LENGTH_BITS)?;
let p_upgrade = reader.read_bool()?;
if p_signature <= bitmask(55) {
break pack(ProductKey {
upgrade: p_upgrade,
serial: p_serial,
hash: p_hash,
signature: p_signature,
Ok(Self {
upgrade: p_upgrade,
serial: p_serial,
hash: p_hash,
signature: p_signature,
})
}
fn pack(&self) -> Vec<u8> {
let mut p_raw: u128 = 0;
p_raw |= (self.signature as u128) << EVERYTHING_ELSE;
p_raw |= (self.hash as u128) << (SERIAL_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (self.serial as u128) << UPGRADE_LENGTH_BITS;
p_raw |= self.upgrade as u128;
p_raw
.to_be_bytes()
.into_iter()
.skip_while(|&x| x == 0)
.collect()
}
}
impl Display for ProductKey {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let pk = base24_encode(&self.pack()).unwrap();
let key = pk
.chars()
.enumerate()
.fold(String::new(), |mut acc: String, (i, c)| {
if i > 0 && i % 5 == 0 {
acc.push('-');
}
acc.push(c);
acc
});
}
};
Ok(base24_encode(&p_raw))
}
const HASH_LENGTH_BITS: u8 = 28;
const SERIAL_LENGTH_BITS: u8 = 30;
const UPGRADE_LENGTH_BITS: u8 = 1;
const EVERYTHING_ELSE: u8 = HASH_LENGTH_BITS + SERIAL_LENGTH_BITS + UPGRADE_LENGTH_BITS;
fn unpack(p_raw: &[u8]) -> Result<ProductKey> {
let mut reader = BitReader::new(p_raw);
// The signature length is unknown, but everything else is, so we can calculate it
let signature_length_bits = (p_raw.len() * 8) as u8 - EVERYTHING_ELSE;
let p_signature = reader.read_u64(signature_length_bits)?;
let p_hash = reader.read_u32(HASH_LENGTH_BITS)?;
let p_serial = reader.read_u32(SERIAL_LENGTH_BITS)?;
let p_upgrade = reader.read_bool()?;
Ok(ProductKey {
upgrade: p_upgrade,
serial: p_serial,
hash: p_hash,
signature: p_signature,
})
}
fn pack(p_key: ProductKey) -> Vec<u8> {
let mut p_raw: u128 = 0;
p_raw |= (p_key.signature as u128) << EVERYTHING_ELSE;
p_raw |= (p_key.hash as u128) << (SERIAL_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (p_key.serial as u128) << UPGRADE_LENGTH_BITS;
p_raw |= p_key.upgrade as u128;
p_raw
.to_be_bytes()
.into_iter()
.skip_while(|&x| x == 0)
.collect()
write!(f, "{}", key)
}
}
#[cfg(test)]
@ -194,7 +251,7 @@ mod tests {
use serde_json::from_reader;
use crate::crypto::initialize_elliptic_curve;
use crate::crypto::EllipticCurve;
#[test]
fn verify_test() {
@ -218,35 +275,21 @@ mod tests {
let kx = bink["pub"]["x"].as_str().unwrap();
let ky = bink["pub"]["y"].as_str().unwrap();
let (e_curve, gen_point, pub_point) = initialize_elliptic_curve(p, a, b, gx, gy, kx, ky);
let curve = EllipticCurve::new(p, a, b, gx, gy, kx, ky).unwrap();
assert!(super::verify(&e_curve, &gen_point, &pub_point, product_key, true).unwrap());
assert!(!super::verify(
&e_curve,
&gen_point,
&pub_point,
"11111-R6BG2-39J83-RYKHF-W47TT",
true
)
.unwrap());
assert!(super::ProductKey::from_key(&curve, product_key).is_ok());
assert!(super::ProductKey::from_key(&curve, "11111-R6BG2-39J83-RYKHF-W47TT").is_err());
}
#[test]
fn pack_test() {
let p_key = super::ProductKey {
let key = super::ProductKey {
upgrade: false,
serial: 640010550,
hash: 39185432,
signature: 6939952665262054,
};
let p_raw = super::pack(p_key);
assert_eq!(
p_raw,
vec![
0xC5, 0x3E, 0xCD, 0x2A, 0xF7, 0xBF, 0x31, 0x2A, 0xF6, 0x0C, 0x4C, 0x4B, 0x92, 0x6C
]
);
assert_eq!(key.to_string(), "D9924-R6BG2-39J83-RYKHF-W47TT");
}
}

View file

@ -1,22 +1,33 @@
use anyhow::Result;
use std::fmt::{Display, Formatter};
use anyhow::{bail, Result};
use bitreader::BitReader;
use openssl::{
bn::{BigNum, BigNumContext, MsbOption},
ec::{EcGroup, EcPoint},
rand::rand_bytes,
sha::sha1,
};
use crate::{
crypto::{bitmask, by_dword, next_sn_bits},
key::{base24_decode, base24_encode},
crypto::{EllipticCurve, PrivateKey},
key::{base24_decode, base24_encode, strip_key},
math::{bitmask, by_dword, next_sn_bits},
};
const FIELD_BITS: i32 = 512;
const FIELD_BYTES: usize = 64;
const SHA_MSG_LENGTH: usize = 3 + 2 * FIELD_BYTES;
#[derive(Clone, Copy, Debug)]
struct ProductKey {
const SIGNATURE_LENGTH_BITS: u8 = 62;
const HASH_LENGTH_BITS: u8 = 31;
const CHANNEL_ID_LENGTH_BITS: u8 = 10;
const UPGRADE_LENGTH_BITS: u8 = 1;
const EVERYTHING_ELSE: u8 =
SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS;
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ProductKey {
upgrade: bool,
channel_id: u32,
hash: u32,
@ -24,117 +35,231 @@ struct ProductKey {
auth_info: u32,
}
pub fn verify(
e_curve: &EcGroup,
base_point: &EcPoint,
public_key: &EcPoint,
cd_key: &str,
verbose: bool,
) -> Result<bool> {
let mut num_context = BigNumContext::new()?;
impl ProductKey {
pub fn new(
curve: &EllipticCurve,
private_key: &PrivateKey,
channel_id: u32,
sequence: Option<u32>,
auth_info: Option<u32>,
upgrade: Option<bool>,
) -> Result<Self> {
// Generate random sequence if none supplied
let sequence = match sequence {
Some(serial) => serial,
None => {
let mut bn_rand = BigNum::new()?;
bn_rand.rand(19, MsbOption::MAYBE_ZERO, false)?;
let o_raw = u32::from_be_bytes(bn_rand.to_vec_padded(4)?.try_into().unwrap());
o_raw % 999999
}
};
let b_key = base24_decode(cd_key);
let product_key = unpack(&b_key)?;
// Generate random auth info if none supplied
let auth_info = match auth_info {
Some(auth_info) => auth_info,
None => {
let mut p_auth_info_bytes = [0_u8; 4];
rand_bytes(&mut p_auth_info_bytes)?;
u32::from_ne_bytes(p_auth_info_bytes) & ((1 << 10) - 1)
}
};
let p_data = product_key.channel_id << 1 | product_key.upgrade as u32;
// Default to upgrade=false
let upgrade = upgrade.unwrap_or(false);
if verbose {
println!("Validation results:");
println!(" Upgrade: {}", product_key.upgrade);
println!("Channel ID: {}", product_key.channel_id);
println!(" Hash: {}", product_key.hash);
println!(" Signature: {}", product_key.signature);
println!(" AuthInfo: {}", product_key.auth_info);
println!();
// Generate a new random key
let product_key = Self::generate(
&curve.curve,
&curve.gen_point,
&private_key.gen_order,
&private_key.private_key,
channel_id * 1_000_000 + sequence,
auth_info,
upgrade,
)?;
// Make sure the key is valid
product_key.verify(&curve.curve, &curve.gen_point, &curve.pub_point)?;
// Ship it
Ok(product_key)
}
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
pub fn from_key(curve: &EllipticCurve, key: &str) -> Result<Self> {
let key = strip_key(key)?;
let Ok(p_raw) = base24_decode(&key) else {
bail!("Product key is in an incorrect format!")
};
let product_key = Self::from_packed(&p_raw)?;
let verified = product_key.verify(&curve.curve, &curve.gen_point, &curve.pub_point)?;
if !verified {
bail!("Product key is invalid! Wrong BINK ID?");
}
Ok(product_key)
}
msg_buffer[0x00] = 0x5D;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
msg_buffer[0x03] = (product_key.hash & 0x000000FF) as u8;
msg_buffer[0x04] = ((product_key.hash & 0x0000FF00) >> 8) as u8;
msg_buffer[0x05] = ((product_key.hash & 0x00FF0000) >> 16) as u8;
msg_buffer[0x06] = ((product_key.hash & 0xFF000000) >> 24) as u8;
msg_buffer[0x07] = (product_key.auth_info & 0x00FF) as u8;
msg_buffer[0x08] = ((product_key.auth_info & 0xFF00) >> 8) as u8;
msg_buffer[0x09] = 0x00;
msg_buffer[0x0A] = 0x00;
fn generate(
e_curve: &EcGroup,
base_point: &EcPoint,
gen_order: &BigNum,
private_key: &BigNum,
p_channel_id: u32,
p_auth_info: u32,
p_upgrade: bool,
) -> Result<Self> {
let mut num_context = BigNumContext::new().unwrap();
let msg_digest = sha1(&msg_buffer[..=0x0A]);
let mut c = BigNum::new()?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32
| by_dword(&msg_digest[0..4]) as u64;
let p_data = p_channel_id << 1 | p_upgrade as u32;
let e = BigNum::from_slice(&i_signature.to_be_bytes())?;
let s = BigNum::from_slice(&product_key.signature.to_be_bytes())?;
let mut no_square = false;
let key = loop {
let mut r = EcPoint::new(e_curve)?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
c.rand(FIELD_BITS, MsbOption::MAYBE_ZERO, false)?;
let mut p = EcPoint::new(e_curve)?;
let mut t = EcPoint::new(e_curve)?;
r.mul(e_curve, base_point, &c, &num_context)?;
t.mul(e_curve, base_point, &s, &num_context)?;
p.mul(e_curve, public_key, &e, &num_context)?;
let p_2 = p.to_owned(e_curve)?;
r.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
p.add(e_curve, &t, &p_2, &mut num_context)?;
let p_2 = p.to_owned(e_curve)?;
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
p.mul(e_curve, &p_2, &s, &num_context)?;
let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?;
x_bin.reverse();
let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?;
y_bin.reverse();
p.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
msg_buffer[0x00] = 0x79;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?;
x_bin.reverse();
let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?;
y_bin.reverse();
msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin);
msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin);
msg_buffer[0x00] = 0x79;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
let msg_digest = sha1(&msg_buffer);
msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin);
msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin);
let p_hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32;
let msg_digest = sha1(&msg_buffer);
msg_buffer[0x00] = 0x5D;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
msg_buffer[0x03] = (p_hash & 0x000000FF) as u8;
msg_buffer[0x04] = ((p_hash & 0x0000FF00) >> 8) as u8;
msg_buffer[0x05] = ((p_hash & 0x00FF0000) >> 16) as u8;
msg_buffer[0x06] = ((p_hash & 0xFF000000) >> 24) as u8;
msg_buffer[0x07] = (p_auth_info & 0x00FF) as u8;
msg_buffer[0x08] = ((p_auth_info & 0xFF00) >> 8) as u8;
msg_buffer[0x09] = 0x00;
msg_buffer[0x0A] = 0x00;
let hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32;
let msg_digest = sha1(&msg_buffer[..=0x0A]);
Ok(hash == product_key.hash)
}
let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32
| by_dword(&msg_digest[0..4]) as u64;
pub fn generate(
e_curve: &EcGroup,
base_point: &EcPoint,
gen_order: &BigNum,
private_key: &BigNum,
p_channel_id: u32,
p_auth_info: u32,
p_upgrade: bool,
) -> Result<String> {
let mut num_context = BigNumContext::new().unwrap();
let mut e = BigNum::from_slice(&i_signature.to_be_bytes())?;
let mut c = BigNum::new()?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let e_2 = e.to_owned()?;
e.mod_mul(&e_2, private_key, gen_order, &mut num_context)?;
let p_data = p_channel_id << 1 | p_upgrade as u32;
let mut s = e.to_owned()?;
let mut no_square = false;
let p_raw: Vec<u8> = loop {
let mut r = EcPoint::new(e_curve)?;
let s_2 = s.to_owned()?;
s.mod_sqr(&s_2, gen_order, &mut num_context)?;
c.rand(FIELD_BITS, MsbOption::MAYBE_ZERO, false)?;
let c_2 = c.to_owned()?;
c.lshift(&c_2, 2)?;
r.mul(e_curve, base_point, &c, &num_context)?;
s = &s + &c;
r.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
let s_2 = s.to_owned()?;
if s.mod_sqrt(&s_2, gen_order, &mut num_context).is_err() {
no_square = true;
};
let s_2 = s.to_owned()?;
s.mod_sub(&s_2, &e, gen_order, &mut num_context)?;
if s.is_bit_set(0) {
s = &s + gen_order;
}
let s_2 = s.to_owned()?;
s.rshift1(&s_2)?;
let p_signature = u64::from_be_bytes(s.to_vec_padded(8)?.try_into().unwrap());
let product_key = Self {
upgrade: p_upgrade,
channel_id: p_channel_id,
hash: p_hash,
signature: p_signature,
auth_info: p_auth_info,
};
if p_signature <= bitmask(62) && !no_square {
break product_key;
}
no_square = false;
};
Ok(key)
}
fn verify(
&self,
e_curve: &EcGroup,
base_point: &EcPoint,
public_key: &EcPoint,
) -> Result<bool> {
let mut num_context = BigNumContext::new()?;
let p_data = self.channel_id << 1 | self.upgrade as u32;
let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH];
msg_buffer[0x00] = 0x5D;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
msg_buffer[0x03] = (self.hash & 0x000000FF) as u8;
msg_buffer[0x04] = ((self.hash & 0x0000FF00) >> 8) as u8;
msg_buffer[0x05] = ((self.hash & 0x00FF0000) >> 16) as u8;
msg_buffer[0x06] = ((self.hash & 0xFF000000) >> 24) as u8;
msg_buffer[0x07] = (self.auth_info & 0x00FF) as u8;
msg_buffer[0x08] = ((self.auth_info & 0xFF00) >> 8) as u8;
msg_buffer[0x09] = 0x00;
msg_buffer[0x0A] = 0x00;
let msg_digest = sha1(&msg_buffer[..=0x0A]);
let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32
| by_dword(&msg_digest[0..4]) as u64;
let e = BigNum::from_slice(&i_signature.to_be_bytes())?;
let s = BigNum::from_slice(&self.signature.to_be_bytes())?;
let mut x = BigNum::new()?;
let mut y = BigNum::new()?;
let mut p = EcPoint::new(e_curve)?;
let mut t = EcPoint::new(e_curve)?;
t.mul(e_curve, base_point, &s, &num_context)?;
p.mul(e_curve, public_key, &e, &num_context)?;
let p_2 = p.to_owned(e_curve)?;
p.add(e_curve, &t, &p_2, &mut num_context)?;
let p_2 = p.to_owned(e_curve)?;
p.mul(e_curve, &p_2, &s, &num_context)?;
p.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?;
let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?;
x_bin.reverse();
let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?;
@ -149,130 +274,75 @@ pub fn generate(
let msg_digest = sha1(&msg_buffer);
let p_hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32;
let hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32;
msg_buffer[0x00] = 0x5D;
msg_buffer[0x01] = (p_data & 0x00FF) as u8;
msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8;
msg_buffer[0x03] = (p_hash & 0x000000FF) as u8;
msg_buffer[0x04] = ((p_hash & 0x0000FF00) >> 8) as u8;
msg_buffer[0x05] = ((p_hash & 0x00FF0000) >> 16) as u8;
msg_buffer[0x06] = ((p_hash & 0xFF000000) >> 24) as u8;
msg_buffer[0x07] = (p_auth_info & 0x00FF) as u8;
msg_buffer[0x08] = ((p_auth_info & 0xFF00) >> 8) as u8;
msg_buffer[0x09] = 0x00;
msg_buffer[0x0A] = 0x00;
Ok(hash == self.hash)
}
let msg_digest = sha1(&msg_buffer[..=0x0A]);
fn from_packed(p_raw: &[u8]) -> Result<Self> {
let mut reader = BitReader::new(p_raw);
let auth_info_length_bits = (p_raw.len() * 8) as u8 - EVERYTHING_ELSE;
let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32
| by_dword(&msg_digest[0..4]) as u64;
let p_auth_info = reader.read_u32(auth_info_length_bits)?;
let p_signature = reader.read_u64(SIGNATURE_LENGTH_BITS)?;
let p_hash = reader.read_u32(HASH_LENGTH_BITS)?;
let p_channel_id = reader.read_u32(CHANNEL_ID_LENGTH_BITS)?;
let p_upgrade = reader.read_bool()?;
let mut e = BigNum::from_slice(&i_signature.to_be_bytes())?;
let e_2 = e.to_owned()?;
e.mod_mul(&e_2, private_key, gen_order, &mut num_context)?;
let mut s = e.to_owned()?;
let s_2 = s.to_owned()?;
s.mod_sqr(&s_2, gen_order, &mut num_context)?;
let c_2 = c.to_owned()?;
c.lshift(&c_2, 2)?;
s = &s + &c;
let s_2 = s.to_owned()?;
if s.mod_sqrt(&s_2, gen_order, &mut num_context).is_err() {
no_square = true;
};
let s_2 = s.to_owned()?;
s.mod_sub(&s_2, &e, gen_order, &mut num_context)?;
if s.is_bit_set(0) {
s = &s + gen_order;
}
let s_2 = s.to_owned()?;
s.rshift1(&s_2)?;
let p_signature = u64::from_be_bytes(s.to_vec_padded(8)?.try_into().unwrap());
let product_key = ProductKey {
Ok(Self {
upgrade: p_upgrade,
channel_id: p_channel_id,
hash: p_hash,
signature: p_signature,
auth_info: p_auth_info,
};
})
}
if p_signature <= bitmask(62) && !no_square {
break pack(product_key);
}
fn pack(&self) -> Vec<u8> {
let mut p_raw: u128 = 0;
no_square = false;
};
p_raw |= (self.auth_info as u128)
<< (SIGNATURE_LENGTH_BITS
+ HASH_LENGTH_BITS
+ CHANNEL_ID_LENGTH_BITS
+ UPGRADE_LENGTH_BITS);
p_raw |= (self.signature as u128)
<< (HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (self.hash as u128) << (CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (self.channel_id as u128) << UPGRADE_LENGTH_BITS;
p_raw |= self.upgrade as u128;
Ok(base24_encode(&p_raw))
p_raw
.to_be_bytes()
.into_iter()
.skip_while(|&x| x == 0)
.collect()
}
}
const SIGNATURE_LENGTH_BITS: u8 = 62;
const HASH_LENGTH_BITS: u8 = 31;
const CHANNEL_ID_LENGTH_BITS: u8 = 10;
const UPGRADE_LENGTH_BITS: u8 = 1;
const EVERYTHING_ELSE: u8 =
SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS;
fn unpack(p_raw: &[u8]) -> Result<ProductKey> {
let mut reader = BitReader::new(p_raw);
let auth_info_length_bits = (p_raw.len() * 8) as u8 - EVERYTHING_ELSE;
let p_auth_info = reader.read_u32(auth_info_length_bits)?;
let p_signature = reader.read_u64(SIGNATURE_LENGTH_BITS)?;
let p_hash = reader.read_u32(HASH_LENGTH_BITS)?;
let p_channel_id = reader.read_u32(CHANNEL_ID_LENGTH_BITS)?;
let p_upgrade = reader.read_bool()?;
Ok(ProductKey {
upgrade: p_upgrade,
channel_id: p_channel_id,
hash: p_hash,
signature: p_signature,
auth_info: p_auth_info,
})
}
fn pack(p_key: ProductKey) -> Vec<u8> {
let mut p_raw: u128 = 0;
p_raw |= (p_key.auth_info as u128)
<< (SIGNATURE_LENGTH_BITS
+ HASH_LENGTH_BITS
+ CHANNEL_ID_LENGTH_BITS
+ UPGRADE_LENGTH_BITS);
p_raw |= (p_key.signature as u128)
<< (HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (p_key.hash as u128) << (CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS);
p_raw |= (p_key.channel_id as u128) << UPGRADE_LENGTH_BITS;
p_raw |= p_key.upgrade as u128;
p_raw
.to_be_bytes()
.into_iter()
.skip_while(|&x| x == 0)
.collect()
impl Display for ProductKey {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let pk = base24_encode(&self.pack()).unwrap();
let key = pk
.chars()
.enumerate()
.fold(String::new(), |mut acc: String, (i, c)| {
if i > 0 && i % 5 == 0 {
acc.push('-');
}
acc.push(c);
acc
});
write!(f, "{}", key)
}
}
#[cfg(test)]
mod tests {
use serde_json::from_reader;
use std::{fs::File, io::BufReader};
use openssl::bn::{BigNum, BigNumContext};
use serde_json::from_reader;
use crate::crypto::initialize_elliptic_curve;
use crate::crypto::EllipticCurve;
#[test]
fn verify_test() {
@ -296,27 +366,9 @@ mod tests {
let kx = bink["pub"]["x"].as_str().unwrap();
let ky = bink["pub"]["y"].as_str().unwrap();
let (e_curve, gen_point, pub_point) = initialize_elliptic_curve(p, a, b, gx, gy, kx, ky);
let curve = EllipticCurve::new(p, a, b, gx, gy, kx, ky).unwrap();
assert!(super::verify(&e_curve, &gen_point, &pub_point, product_key, true).unwrap());
}
#[test]
fn prime_test() {
let mut ctx = BigNumContext::new().unwrap();
let p = BigNum::from_dec_str("9759712359818460653").unwrap();
let mut p2 = BigNum::new().unwrap();
let _ = p2.sqr(&p, &mut ctx);
println!("p2: {:?}", p2);
}
#[test]
fn sqrt_test() {
let mut ctx = BigNumContext::new().unwrap();
let s = BigNum::from_dec_str("95251985346393225982548498694509186409").unwrap();
let p = BigNum::from_dec_str("9362780380393422053").unwrap();
let mut out = BigNum::new().unwrap();
out.mod_sqrt(&s, &p, &mut ctx).unwrap();
assert_eq!(out, BigNum::from_dec_str("8965848400968383453").unwrap());
assert!(super::ProductKey::from_key(&curve, product_key).is_ok());
assert!(super::ProductKey::from_key(&curve, "11111-YRGC8-4KYTG-C3FCC-JCFDY").is_err());
}
}

View file

@ -1,49 +1,63 @@
use anyhow::Result;
use openssl::{
bn::{BigNum, BigNumContext},
ec::{EcGroup, EcPoint},
};
pub fn initialize_elliptic_curve(
p_sel: &str,
a_sel: &str,
b_sel: &str,
generator_x_sel: &str,
generator_y_sel: &str,
public_key_x_sel: &str,
public_key_y_sel: &str,
) -> (EcGroup, EcPoint, EcPoint) {
let mut context = BigNumContext::new().unwrap();
let p = BigNum::from_dec_str(p_sel).unwrap();
let a = BigNum::from_dec_str(a_sel).unwrap();
let b = BigNum::from_dec_str(b_sel).unwrap();
let generator_x = BigNum::from_dec_str(generator_x_sel).unwrap();
let generator_y = BigNum::from_dec_str(generator_y_sel).unwrap();
let public_key_x = BigNum::from_dec_str(public_key_x_sel).unwrap();
let public_key_y = BigNum::from_dec_str(public_key_y_sel).unwrap();
let c_curve = EcGroup::from_components(p, a, b, &mut context).unwrap();
let mut gen_point = EcPoint::new(&c_curve).unwrap();
let _ =
gen_point.set_affine_coordinates_gfp(&c_curve, &generator_x, &generator_y, &mut context);
let mut pub_point = EcPoint::new(&c_curve).unwrap();
let _ =
pub_point.set_affine_coordinates_gfp(&c_curve, &public_key_x, &public_key_y, &mut context);
(c_curve, gen_point, pub_point)
pub struct EllipticCurve {
pub curve: EcGroup,
pub gen_point: EcPoint,
pub pub_point: EcPoint,
}
pub fn bitmask(n: u64) -> u64 {
(1 << n) - 1
pub struct PrivateKey {
pub gen_order: BigNum,
pub private_key: BigNum,
}
pub fn next_sn_bits(field: u64, n: u32, offset: u32) -> u64 {
(field >> offset) & ((1u64 << n) - 1)
impl PrivateKey {
pub fn new(gen_order: &str, private_key: &str) -> Result<Self> {
let gen_order = BigNum::from_dec_str(gen_order)?;
let private_key = &gen_order - &BigNum::from_dec_str(private_key)?;
Ok(Self {
gen_order,
private_key,
})
}
}
pub fn by_dword(n: &[u8]) -> u32 {
(n[0] as u32) | (n[1] as u32) << 8 | (n[2] as u32) << 16 | (n[3] as u32) << 24
impl EllipticCurve {
pub fn new(
p: &str,
a: &str,
b: &str,
generator_x: &str,
generator_y: &str,
public_key_x: &str,
public_key_y: &str,
) -> Result<Self> {
let mut context = BigNumContext::new()?;
let p = BigNum::from_dec_str(p)?;
let a = BigNum::from_dec_str(a)?;
let b = BigNum::from_dec_str(b)?;
let generator_x = BigNum::from_dec_str(generator_x)?;
let generator_y = BigNum::from_dec_str(generator_y)?;
let public_key_x = BigNum::from_dec_str(public_key_x)?;
let public_key_y = BigNum::from_dec_str(public_key_y)?;
let curve = EcGroup::from_components(p, a, b, &mut context)?;
let mut gen_point = EcPoint::new(&curve)?;
gen_point.set_affine_coordinates_gfp(&curve, &generator_x, &generator_y, &mut context)?;
let mut pub_point = EcPoint::new(&curve)?;
pub_point.set_affine_coordinates_gfp(&curve, &public_key_x, &public_key_y, &mut context)?;
Ok(Self {
curve,
gen_point,
pub_point,
})
}
}

View file

@ -1,5 +1,6 @@
use std::collections::VecDeque;
use anyhow::{anyhow, Result};
use openssl::bn::BigNum;
use crate::PK_LENGTH;
@ -10,7 +11,7 @@ pub const P_KEY_CHARSET: [char; 24] = [
'4', '6', '7', '8', '9',
];
pub fn base24_decode(cd_key: &str) -> Vec<u8> {
pub(crate) fn base24_decode(cd_key: &str) -> Result<Vec<u8>> {
let p_decoded_key: Vec<u8> = cd_key
.chars()
.filter_map(|c| P_KEY_CHARSET.iter().position(|&x| x == c).map(|i| i as u8))
@ -23,14 +24,33 @@ pub fn base24_decode(cd_key: &str) -> Vec<u8> {
y.add_word(i.into()).unwrap();
}
y.to_vec()
Ok(y.to_vec())
}
pub fn base24_encode(byte_seq: &[u8]) -> String {
pub(crate) fn base24_encode(byte_seq: &[u8]) -> Result<String> {
let mut z = BigNum::from_slice(byte_seq).unwrap();
let mut out: VecDeque<char> = VecDeque::new();
(0..=24).for_each(|_| out.push_front(P_KEY_CHARSET[z.div_word(24).unwrap() as usize]));
out.iter().collect()
Ok(out.iter().collect())
}
pub(crate) fn strip_key(in_key: &str) -> Result<String> {
let out_key: String = in_key
.chars()
.filter_map(|c| {
let c = c.to_ascii_uppercase();
if P_KEY_CHARSET.into_iter().any(|x| x == c) {
Some(c)
} else {
None
}
})
.collect();
if out_key.len() == PK_LENGTH {
Ok(out_key)
} else {
Err(anyhow!("Invalid key length"))
}
}
#[cfg(test)]
@ -38,9 +58,9 @@ mod tests {
#[test]
fn test_base24() {
let input = "JTW3TJ7PFJ7V9CCMX84V9PFT8";
let unbase24 = super::base24_decode(input);
let unbase24 = super::base24_decode(input).unwrap();
println!("{:?}", unbase24);
let base24 = super::base24_encode(&unbase24);
let base24 = super::base24_encode(&unbase24).unwrap();
println!("{}", base24);
assert_eq!(input, base24);
}

View file

@ -2,6 +2,7 @@ pub mod bink1998;
pub mod bink2002;
pub mod confid;
pub mod crypto;
pub mod key;
mod key;
mod math;
pub const PK_LENGTH: usize = 25;
const PK_LENGTH: usize = 25;

11
src/math.rs Normal file
View file

@ -0,0 +1,11 @@
pub(crate) fn bitmask(n: u64) -> u64 {
(1 << n) - 1
}
pub(crate) fn next_sn_bits(field: u64, n: u32, offset: u32) -> u64 {
(field >> offset) & ((1u64 << n) - 1)
}
pub(crate) fn by_dword(n: &[u8]) -> u32 {
(n[0] as u32) | (n[1] as u32) << 8 | (n[2] as u32) << 16 | (n[3] as u32) << 24
}