use anyhow::Result; use bitreader::BitReader; use openssl::{ bn::{BigNum, BigNumContext, MsbOption}, ec::{EcGroup, EcPoint}, sha::sha1, }; use crate::key::{base24_decode, base24_encode}; const FIELD_BITS: i32 = 512; const FIELD_BYTES: usize = 64; const SHA_MSG_LENGTH: usize = 3 + 2 * FIELD_BYTES; #[derive(Clone, Copy, Debug)] struct ProductKey { upgrade: bool, channel_id: u32, hash: u32, signature: u64, auth_info: u32, } pub fn verify( e_curve: &EcGroup, base_point: &EcPoint, public_key: &EcPoint, cd_key: &str, verbose: bool, ) -> Result { let mut num_context = BigNumContext::new()?; let b_key = base24_decode(cd_key); let product_key = unpack(&b_key)?; let p_data = product_key.channel_id << 1 | product_key.upgrade as u32; if verbose { println!("Validation results:"); println!(" Upgrade: {}", product_key.upgrade); println!("Channel ID: {}", product_key.channel_id); println!(" Hash: {}", product_key.hash); println!(" Signature: {}", product_key.signature); println!(" AuthInfo: {}", product_key.auth_info); println!(); } let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH]; msg_buffer[0x00] = 0x5D; msg_buffer[0x01] = (p_data & 0x00FF) as u8; msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8; msg_buffer[0x03] = (product_key.hash & 0x000000FF) as u8; msg_buffer[0x04] = ((product_key.hash & 0x0000FF00) >> 8) as u8; msg_buffer[0x05] = ((product_key.hash & 0x00FF0000) >> 16) as u8; msg_buffer[0x06] = ((product_key.hash & 0xFF000000) >> 24) as u8; msg_buffer[0x07] = (product_key.auth_info & 0x00FF) as u8; msg_buffer[0x08] = ((product_key.auth_info & 0xFF00) >> 8) as u8; msg_buffer[0x09] = 0x00; msg_buffer[0x0A] = 0x00; let msg_digest = sha1(&msg_buffer[..=0x0A]); let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32 | by_dword(&msg_digest[0..4]) as u64; let e = BigNum::from_slice(&i_signature.to_be_bytes())?; let s = BigNum::from_slice(&product_key.signature.to_be_bytes())?; let mut x = BigNum::new()?; let mut y = BigNum::new()?; let mut p = EcPoint::new(e_curve)?; let mut t = EcPoint::new(e_curve)?; t.mul(e_curve, base_point, &s, &num_context)?; p.mul(e_curve, public_key, &e, &num_context)?; let p_2 = p.to_owned(e_curve)?; p.add(e_curve, &t, &p_2, &mut num_context)?; let p_2 = p.to_owned(e_curve)?; p.mul(e_curve, &p_2, &s, &num_context)?; p.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?; let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?; x_bin.reverse(); let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?; y_bin.reverse(); msg_buffer[0x00] = 0x79; msg_buffer[0x01] = (p_data & 0x00FF) as u8; msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8; msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin); msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin); let msg_digest = sha1(&msg_buffer); let hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32; Ok(hash == product_key.hash) } pub fn generate( e_curve: &EcGroup, base_point: &EcPoint, gen_order: &BigNum, private_key: &BigNum, p_channel_id: u32, p_auth_info: u32, p_upgrade: bool, ) -> Result { let mut num_context = BigNumContext::new().unwrap(); let mut c = BigNum::new()?; let mut x = BigNum::new()?; let mut y = BigNum::new()?; let p_data = p_channel_id << 1 | p_upgrade as u32; let mut no_square = false; let p_raw: Vec = loop { let mut r = EcPoint::new(e_curve)?; c.rand(FIELD_BITS, MsbOption::MAYBE_ZERO, false)?; r.mul(e_curve, base_point, &c, &num_context)?; r.affine_coordinates(e_curve, &mut x, &mut y, &mut num_context)?; let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH]; let mut x_bin = x.to_vec_padded(FIELD_BYTES as i32)?; x_bin.reverse(); let mut y_bin = y.to_vec_padded(FIELD_BYTES as i32)?; y_bin.reverse(); msg_buffer[0x00] = 0x79; msg_buffer[0x01] = (p_data & 0x00FF) as u8; msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8; msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin); msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin); let msg_digest = sha1(&msg_buffer); let p_hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32; msg_buffer[0x00] = 0x5D; msg_buffer[0x01] = (p_data & 0x00FF) as u8; msg_buffer[0x02] = ((p_data & 0xFF00) >> 8) as u8; msg_buffer[0x03] = (p_hash & 0x000000FF) as u8; msg_buffer[0x04] = ((p_hash & 0x0000FF00) >> 8) as u8; msg_buffer[0x05] = ((p_hash & 0x00FF0000) >> 16) as u8; msg_buffer[0x06] = ((p_hash & 0xFF000000) >> 24) as u8; msg_buffer[0x07] = (p_auth_info & 0x00FF) as u8; msg_buffer[0x08] = ((p_auth_info & 0xFF00) >> 8) as u8; msg_buffer[0x09] = 0x00; msg_buffer[0x0A] = 0x00; let msg_digest = sha1(&msg_buffer[..=0x0A]); let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32 | by_dword(&msg_digest[0..4]) as u64; let mut e = BigNum::from_slice(&i_signature.to_be_bytes())?; let e_2 = e.to_owned()?; e.mod_mul(&e_2, private_key, gen_order, &mut num_context)?; let mut s = e.to_owned()?; let s_2 = s.to_owned()?; s.mod_sqr(&s_2, gen_order, &mut num_context)?; let c_2 = c.to_owned()?; c.lshift(&c_2, 2)?; s = &s + &c; let s_2 = s.to_owned()?; if s.mod_sqrt(&s_2, gen_order, &mut num_context).is_err() { no_square = true; }; let s_2 = s.to_owned()?; s.mod_sub(&s_2, &e, gen_order, &mut num_context)?; if s.is_bit_set(0) { s = &s + gen_order; } let s_2 = s.to_owned()?; s.rshift1(&s_2)?; let p_signature = u64::from_be_bytes(s.to_vec_padded(8)?.try_into().unwrap()); let product_key = ProductKey { upgrade: p_upgrade, channel_id: p_channel_id, hash: p_hash, signature: p_signature, auth_info: p_auth_info, }; if p_signature <= bitmask(62) && !no_square { break pack(product_key); } no_square = false; }; Ok(base24_encode(&p_raw)) } const SIGNATURE_LENGTH_BITS: u8 = 62; const HASH_LENGTH_BITS: u8 = 31; const CHANNEL_ID_LENGTH_BITS: u8 = 10; const UPGRADE_LENGTH_BITS: u8 = 1; const EVERYTHING_ELSE: u8 = SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS; fn unpack(p_raw: &[u8]) -> Result { let mut reader = BitReader::new(p_raw); let auth_info_length_bits = (p_raw.len() * 8) as u8 - EVERYTHING_ELSE; let p_auth_info = reader.read_u32(auth_info_length_bits)?; let p_signature = reader.read_u64(SIGNATURE_LENGTH_BITS)?; let p_hash = reader.read_u32(HASH_LENGTH_BITS)?; let p_channel_id = reader.read_u32(CHANNEL_ID_LENGTH_BITS)?; let p_upgrade = reader.read_bool()?; Ok(ProductKey { upgrade: p_upgrade, channel_id: p_channel_id, hash: p_hash, signature: p_signature, auth_info: p_auth_info, }) } fn pack(p_key: ProductKey) -> Vec { let mut p_raw: u128 = 0; p_raw |= (p_key.auth_info as u128) << (SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); p_raw |= (p_key.signature as u128) << (HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); p_raw |= (p_key.hash as u128) << (CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); p_raw |= (p_key.channel_id as u128) << UPGRADE_LENGTH_BITS; p_raw |= p_key.upgrade as u128; p_raw .to_be_bytes() .into_iter() .skip_while(|&x| x == 0) .collect() } fn bitmask(n: u64) -> u64 { (1 << n) - 1 } fn next_sn_bits(field: u64, n: u32, offset: u32) -> u64 { (field >> offset) & ((1u64 << n) - 1) } fn by_dword(n: &[u8]) -> u32 { (n[0] as u32) | (n[1] as u32) << 8 | (n[2] as u32) << 16 | (n[3] as u32) << 24 } #[cfg(test)] mod tests { use std::{fs::File, io::BufReader}; use serde_json::from_reader; use crate::crypto::initialize_elliptic_curve; #[test] fn verify_test() { // Example product key and its BINK ID let product_key = "R882X-YRGC8-4KYTG-C3FCC-JCFDY"; let bink_id = "54"; // Load keys.json let path = "keys.json"; let file = File::open(path).unwrap(); let reader = BufReader::new(file); let keys: serde_json::Value = from_reader(reader).unwrap(); let bink = &keys["BINK"][&bink_id]; let p = bink["p"].as_str().unwrap(); let a = bink["a"].as_str().unwrap(); let b = bink["b"].as_str().unwrap(); let gx = bink["g"]["x"].as_str().unwrap(); let gy = bink["g"]["y"].as_str().unwrap(); let kx = bink["pub"]["x"].as_str().unwrap(); let ky = bink["pub"]["y"].as_str().unwrap(); let (e_curve, gen_point, pub_point) = initialize_elliptic_curve(p, a, b, gx, gy, kx, ky); assert!(super::verify(&e_curve, &gen_point, &pub_point, product_key, true).unwrap()); } }