//! Structs to deal with newer BINK (>= `0x40`) product keys use std::{ cmp::Ordering, fmt::{Display, Formatter}, }; use anyhow::{bail, Result}; use bitreader::BitReader; use num_bigint::{BigInt, BigUint, RandomBits}; use num_integer::Integer; use num_traits::ToPrimitive; use rand::Rng; use sha1::{Digest, Sha1}; use crate::{ crypto::{mod_sqrt, EllipticCurve, Point, PrivateKey}, key::{base24_decode, base24_encode, strip_key}, math::{bitmask, by_dword, next_sn_bits}, }; const FIELD_BITS: u64 = 512; const FIELD_BYTES: usize = 64; const SHA_MSG_LENGTH: usize = 3 + 2 * FIELD_BYTES; const SIGNATURE_LENGTH_BITS: u8 = 62; const HASH_LENGTH_BITS: u8 = 31; const CHANNEL_ID_LENGTH_BITS: u8 = 10; const UPGRADE_LENGTH_BITS: u8 = 1; const EVERYTHING_ELSE: u8 = SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS; /// A product key for a BINK ID `0x40` or higher /// /// Every `ProductKey` contains a valid key for its given parameters. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub struct ProductKey { upgrade: bool, channel_id: u32, hash: u32, signature: u64, auth_info: u32, } impl ProductKey { /// Generates a new product key for the given parameters. /// /// The key is verified to be valid before being returned. pub fn new( curve: &EllipticCurve, private_key: &PrivateKey, channel_id: u32, auth_info: Option, upgrade: Option, ) -> Result { // Generate random auth info if none supplied let auth_info = match auth_info { Some(auth_info) => auth_info, None => { let mut rng = rand::thread_rng(); let random: BigInt = rng.sample(RandomBits::new(32)); let raw = u32::from_be_bytes(random.to_bytes_be().1[0..4].try_into().unwrap()); raw % (bitmask(10) as u32) } }; // Default to upgrade=false let upgrade = upgrade.unwrap_or(false); // Generate a new random key let product_key = Self::generate( curve, &curve.gen_point, &private_key.gen_order, &private_key.private_key, channel_id, auth_info, upgrade, )?; // Make sure the key is valid product_key.verify(curve, &curve.gen_point, &curve.pub_point)?; // Ship it Ok(product_key) } /// Validates an existing product key string and tried to create a new `ProductKey` from it. /// /// # Arguments /// /// * `curve` - The elliptic curve to use for verification. /// * `key` - Should be 25 characters long, not including the (optional) hyphens. pub fn from_key(curve: &EllipticCurve, key: &str) -> Result { let key = strip_key(key)?; let Ok(packed_key) = base24_decode(&key) else { bail!("Product key is in an incorrect format!") }; let product_key = Self::from_packed(&packed_key)?; let verified = product_key.verify(curve, &curve.gen_point, &curve.pub_point)?; if !verified { bail!("Product key is invalid! Wrong BINK ID?"); } Ok(product_key) } fn generate( e_curve: &EllipticCurve, base_point: &Point, gen_order: &BigInt, private_key: &BigInt, channel_id: u32, auth_info: u32, upgrade: bool, ) -> Result { let data = channel_id << 1 | upgrade as u32; let mut rng = rand::thread_rng(); let mut no_square = false; let key = loop { let c: BigUint = rng.sample(RandomBits::new(FIELD_BITS)); let mut c: BigInt = c.into(); let r = e_curve.multiply_point(&c, base_point); let (x, y) = match r { Point::Point { x, y } => (x, y), Point::Infinity => bail!("Point at infinity!"), }; let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH]; let x_bin = x.to_bytes_le().1; let x_bin = match x_bin.len().cmp(&FIELD_BYTES) { Ordering::Less => (0..FIELD_BYTES - x_bin.len()) .map(|_| 0) .chain(x_bin.into_iter()) .collect(), Ordering::Greater => continue, Ordering::Equal => x_bin, }; let y_bin = y.to_bytes_le().1; let y_bin = match y_bin.len().cmp(&FIELD_BYTES) { Ordering::Less => (0..FIELD_BYTES - y_bin.len()) .map(|_| 0) .chain(y_bin.into_iter()) .collect(), Ordering::Greater => continue, Ordering::Equal => y_bin, }; msg_buffer[0x00] = 0x79; msg_buffer[0x01] = (data & 0x00FF) as u8; msg_buffer[0x02] = ((data & 0xFF00) >> 8) as u8; msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin); msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin); let msg_digest = { let mut hasher = Sha1::new(); hasher.update(msg_buffer); hasher.finalize() }; let hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32; msg_buffer[0x00] = 0x5D; msg_buffer[0x01] = (data & 0x00FF) as u8; msg_buffer[0x02] = ((data & 0xFF00) >> 8) as u8; msg_buffer[0x03] = (hash & 0x000000FF) as u8; msg_buffer[0x04] = ((hash & 0x0000FF00) >> 8) as u8; msg_buffer[0x05] = ((hash & 0x00FF0000) >> 16) as u8; msg_buffer[0x06] = ((hash & 0xFF000000) >> 24) as u8; msg_buffer[0x07] = (auth_info & 0x00FF) as u8; msg_buffer[0x08] = ((auth_info & 0xFF00) >> 8) as u8; msg_buffer[0x09] = 0x00; msg_buffer[0x0A] = 0x00; let msg_digest = { let mut hasher = Sha1::new(); hasher.update(&msg_buffer[..=0x0A]); hasher.finalize() }; let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32 | by_dword(&msg_digest[0..4]) as u64; let mut e = BigInt::from(i_signature); e = (e * private_key).mod_floor(gen_order); let mut s = e.clone(); s = (&s * &s).mod_floor(gen_order); c <<= 2; s = &s + &c; match mod_sqrt(&s, gen_order) { Some(res) => s = res, None => { no_square = true; } } s = (s - e).mod_floor(gen_order); if s.is_odd() { s = &s + gen_order; } s >>= 1; let signature = s.to_u64().unwrap_or(0); let product_key = Self { upgrade, channel_id, hash, signature, auth_info, }; if signature <= bitmask(62) && !no_square { break product_key; } no_square = false; }; Ok(key) } fn verify( &self, e_curve: &EllipticCurve, base_point: &Point, public_key: &Point, ) -> Result { let data = self.channel_id << 1 | self.upgrade as u32; let mut msg_buffer: [u8; SHA_MSG_LENGTH] = [0; SHA_MSG_LENGTH]; msg_buffer[0x00] = 0x5D; msg_buffer[0x01] = (data & 0x00FF) as u8; msg_buffer[0x02] = ((data & 0xFF00) >> 8) as u8; msg_buffer[0x03] = (self.hash & 0x000000FF) as u8; msg_buffer[0x04] = ((self.hash & 0x0000FF00) >> 8) as u8; msg_buffer[0x05] = ((self.hash & 0x00FF0000) >> 16) as u8; msg_buffer[0x06] = ((self.hash & 0xFF000000) >> 24) as u8; msg_buffer[0x07] = (self.auth_info & 0x00FF) as u8; msg_buffer[0x08] = ((self.auth_info & 0xFF00) >> 8) as u8; msg_buffer[0x09] = 0x00; msg_buffer[0x0A] = 0x00; let msg_digest = { let mut hasher = Sha1::new(); hasher.update(&msg_buffer[..=0x0A]); hasher.finalize() }; let i_signature = next_sn_bits(by_dword(&msg_digest[4..8]) as u64, 30, 2) << 32 | by_dword(&msg_digest[0..4]) as u64; let e = BigInt::from(i_signature); let s = BigInt::from(self.signature); let t = e_curve.multiply_point(&s, base_point); let mut p = e_curve.multiply_point(&e, public_key); p = e_curve.add_points(&t, &p); p = e_curve.multiply_point(&s, &p); let (x, y) = match p { Point::Point { x, y } => (x, y), Point::Infinity => bail!("Point at infinity!"), }; let x_bin = x.to_bytes_le().1; let x_bin = if x_bin.len() < FIELD_BYTES { (0..FIELD_BYTES - x_bin.len()) .map(|_| 0) .chain(x_bin.into_iter()) .collect() } else { x_bin }; let y_bin = y.to_bytes_le().1; let y_bin = if y_bin.len() < FIELD_BYTES { (0..FIELD_BYTES - y_bin.len()) .map(|_| 0) .chain(y_bin.into_iter()) .collect() } else { y_bin }; msg_buffer[0x00] = 0x79; msg_buffer[0x01] = (data & 0x00FF) as u8; msg_buffer[0x02] = ((data & 0xFF00) >> 8) as u8; msg_buffer[3..3 + FIELD_BYTES].copy_from_slice(&x_bin); msg_buffer[3 + FIELD_BYTES..3 + FIELD_BYTES * 2].copy_from_slice(&y_bin); let msg_digest = { let mut hasher = Sha1::new(); hasher.update(msg_buffer); hasher.finalize() }; let hash: u32 = by_dword(&msg_digest[0..4]) & bitmask(31) as u32; Ok(hash == self.hash) } fn from_packed(packed_key: &[u8]) -> Result { let mut reader = BitReader::new(packed_key); // The auth info length isn't known, but everything else is, so we can calculate it let auth_info_length_bits = (packed_key.len() * 8) as u8 - EVERYTHING_ELSE; let auth_info = reader.read_u32(auth_info_length_bits)?; let signature = reader.read_u64(SIGNATURE_LENGTH_BITS)?; let hash = reader.read_u32(HASH_LENGTH_BITS)?; let channel_id = reader.read_u32(CHANNEL_ID_LENGTH_BITS)?; let upgrade = reader.read_bool()?; Ok(Self { upgrade, channel_id, hash, signature, auth_info, }) } fn pack(&self) -> Vec { let mut packed_key: u128 = 0; packed_key |= (self.auth_info as u128) << (SIGNATURE_LENGTH_BITS + HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); packed_key |= (self.signature as u128) << (HASH_LENGTH_BITS + CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); packed_key |= (self.hash as u128) << (CHANNEL_ID_LENGTH_BITS + UPGRADE_LENGTH_BITS); packed_key |= (self.channel_id as u128) << UPGRADE_LENGTH_BITS; packed_key |= self.upgrade as u128; packed_key .to_be_bytes() .into_iter() .skip_while(|&x| x == 0) .collect() } } impl Display for ProductKey { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { let pk = base24_encode(&self.pack()).unwrap(); let key = pk .chars() .enumerate() .fold(String::new(), |mut acc: String, (i, c)| { if i > 0 && i % 5 == 0 { acc.push('-'); } acc.push(c); acc }); write!(f, "{}", key) } } #[cfg(test)] mod tests { use serde_json::from_reader; use std::{fs::File, io::BufReader}; use crate::crypto::EllipticCurve; #[test] fn verify_test() { // Example product key and its BINK ID let product_key = "R882X-YRGC8-4KYTG-C3FCC-JCFDY"; let bink_id = "54"; // Load keys.json let path = "../keys.json"; let file = File::open(path).unwrap(); let reader = BufReader::new(file); let keys: serde_json::Value = from_reader(reader).unwrap(); let bink = &keys["BINK"][&bink_id]; let p = bink["p"].as_str().unwrap(); let a = bink["a"].as_str().unwrap(); let gx = bink["g"]["x"].as_str().unwrap(); let gy = bink["g"]["y"].as_str().unwrap(); let kx = bink["pub"]["x"].as_str().unwrap(); let ky = bink["pub"]["y"].as_str().unwrap(); let curve = EllipticCurve::new(p, a, gx, gy, kx, ky).unwrap(); assert!(super::ProductKey::from_key(&curve, product_key).is_ok()); assert!(super::ProductKey::from_key(&curve, "11111-YRGC8-4KYTG-C3FCC-JCFDY").is_err()); } }