umskt-rs/src/bin/xpkey/main.rs
2023-06-24 03:59:25 -04:00

279 lines
7.8 KiB
Rust

mod keys;
use std::{fs::File, io::BufReader, path::Path};
use anyhow::{anyhow, Result};
use clap::{Args, Parser, Subcommand};
use keys::{Bink, Keys};
use serde_json::{from_reader, from_str};
use umskt::{
bink1998, bink2002, confid,
crypto::{EllipticCurve, PrivateKey},
};
#[derive(Parser, Debug)]
#[command(author, about, version, long_about = None)]
struct Cli {
/// Enable verbose output
#[arg(short, long)]
verbose: bool,
#[command(subcommand)]
command: Commands,
}
#[derive(Subcommand, Clone, Debug)]
enum Commands {
/// Show which products/binks can be loaded
List(ListArgs),
/// Generate new product keys
Generate(GenerateArgs),
/// Validate a product key
Validate(ValidateArgs),
/// Generate a phone activation Confirmation ID from an Installation ID
Confid(ConfirmationIdArgs),
}
#[derive(Args, Clone, Debug)]
struct ListArgs {
/// Specify which keys file to load
#[arg(short = 'f', long = "file")]
keys_path: Option<String>,
}
#[derive(Args, Clone, Debug)]
struct GenerateArgs {
/// Specify which BINK identifier to load
#[arg(short, long, default_value = "2E")]
binkid: String,
/// Specify which Channel Identifier to use
#[arg(short = 'c', long = "channel", default_value = "640")]
channel_id: u32,
/// Number of keys to generate
#[arg(short = 'n', long = "number", default_value = "1")]
num_keys: u64,
/// Specify which keys file to load
#[arg(short = 'f', long = "file")]
keys_path: Option<String>,
}
#[derive(Args, Clone, Debug)]
struct ValidateArgs {
/// Specify which BINK identifier to load
#[arg(short, long, default_value = "2E")]
binkid: String,
/// Specify which keys file to load
#[arg(short = 'f', long = "file")]
keys_path: Option<String>,
/// Product key to validate signature
key_to_check: String,
}
#[derive(Args, Clone, Debug)]
struct ConfirmationIdArgs {
/// Installation ID used to generate confirmation ID
instid: String,
}
fn main() -> Result<()> {
let args = Cli::parse();
match &args.command {
Commands::List(list_args) => {
let keys = load_keys(list_args.keys_path.as_ref(), args.verbose)?;
for (key, value) in keys.products.iter() {
println!("{}: {:?}", key, value.bink);
}
println!("\n\n** Please note: any BINK ID other than 2E is considered experimental at this time **\n");
}
Commands::Generate(generate_args) => {
if generate_args.channel_id > 999 {
return Err(anyhow!("Channel ID must be 3 digits or fewer"));
}
let keys = load_keys(generate_args.keys_path.as_ref(), args.verbose)?;
generate(
&keys,
&generate_args.binkid,
generate_args.channel_id,
generate_args.num_keys,
args.verbose,
)?;
}
Commands::Validate(validate_args) => {
let keys = load_keys(validate_args.keys_path.as_ref(), args.verbose)?;
validate(
&keys,
&validate_args.binkid,
&validate_args.key_to_check,
args.verbose,
)?;
}
Commands::Confid(confirmation_id_args) => {
confirmation_id(&confirmation_id_args.instid)?;
}
}
Ok(())
}
fn load_keys<P: AsRef<Path> + std::fmt::Display>(path: Option<P>, verbose: bool) -> Result<Keys> {
let keys = {
if let Some(path) = path {
if verbose {
println!("Loading keys file {}", path);
}
let file = File::open(&path)?;
let reader = BufReader::new(file);
let keys: Keys = from_reader(reader)?;
if verbose {
println!("Loaded keys from {} successfully", path);
}
keys
} else {
from_str(std::include_str!("../../../keys.json"))?
}
};
Ok(keys)
}
fn generate(keys: &Keys, bink_id: &str, channel_id: u32, count: u64, verbose: bool) -> Result<()> {
let bink_id = bink_id.to_ascii_uppercase();
let bink = &keys.bink[&bink_id];
// We cannot produce a valid key without knowing the private key k. The reason for this is that
// we need the result of the function K(x; y) = kG(x; y).
let private_key = &bink.private;
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
let gen_order = &bink.n;
let curve = initialize_curve(bink, &bink_id, verbose)?;
if verbose {
println!(" n: {gen_order}");
println!(" k: {private_key}");
println!();
}
let private_key = PrivateKey::new(gen_order, private_key)?;
if u32::from_str_radix(&bink_id, 16)? < 0x40 {
bink1998_generate(&curve, &private_key, channel_id, count, verbose)?;
} else {
bink2002_generate(&curve, &private_key, channel_id, count, verbose)?;
}
Ok(())
}
fn validate(keys: &Keys, bink_id: &str, key: &str, verbose: bool) -> Result<()> {
let bink_id = bink_id.to_ascii_uppercase();
let bink = &keys.bink[&bink_id];
let curve = initialize_curve(bink, &bink_id, verbose)?;
if u32::from_str_radix(&bink_id, 16)? < 0x40 {
bink1998_validate(&curve, key, verbose)?;
} else {
bink2002_validate(&curve, key, verbose)?;
}
Ok(())
}
fn initialize_curve(bink: &Bink, bink_id: &str, verbose: bool) -> Result<EllipticCurve> {
let p = &bink.p;
let a = &bink.a;
let b = &bink.b;
let gx = &bink.g.x;
let gy = &bink.g.y;
let kx = &bink.public.x;
let ky = &bink.public.y;
if verbose {
println!("-----------------------------------------------------------");
println!(
"Loaded the following elliptic curve parameters: BINK[{}]",
bink_id
);
println!("-----------------------------------------------------------");
println!(" P: {p}");
println!(" a: {a}");
println!(" b: {b}");
println!("Gx: {gx}");
println!("Gy: {gy}");
println!("Kx: {kx}");
println!("Ky: {ky}");
}
EllipticCurve::new(p, a, b, gx, gy, kx, ky)
}
fn bink1998_generate(
curve: &EllipticCurve,
private_key: &PrivateKey,
channel_id: u32,
count: u64,
verbose: bool,
) -> Result<()> {
for _ in 0..count {
let product_key = bink1998::ProductKey::new(curve, private_key, channel_id, None, None)?;
if verbose {
println!("{:?}", product_key);
}
println!("{product_key}");
}
Ok(())
}
fn bink2002_generate(
curve: &EllipticCurve,
private_key: &PrivateKey,
channel_id: u32,
count: u64,
verbose: bool,
) -> Result<()> {
for _ in 0..count {
let product_key = bink2002::ProductKey::new(curve, private_key, channel_id, None, None)?;
if verbose {
println!("{:?}", product_key);
}
println!("{product_key}");
}
Ok(())
}
fn bink1998_validate(curve: &EllipticCurve, key: &str, verbose: bool) -> Result<()> {
let product_key = bink1998::ProductKey::from_key(curve, key)?;
if verbose {
println!("{:?}", product_key);
}
println!("{product_key}");
println!("Key validated successfully!");
Ok(())
}
fn bink2002_validate(curve: &EllipticCurve, key: &str, verbose: bool) -> Result<()> {
let product_key = bink2002::ProductKey::from_key(curve, key)?;
if verbose {
println!("{:?}", product_key);
}
println!("{product_key}");
println!("Key validated successfully!");
Ok(())
}
fn confirmation_id(installation_id: &str) -> Result<()> {
let confirmation_id = confid::generate(installation_id)?;
println!("Confirmation ID: {confirmation_id}");
Ok(())
}