1
0
Fork 0

Added dual opl2 and opl3 emulation.

Fixed the sample rate config option not being used.
Added different soundblaster type options.


Imported-from: https://svn.code.sf.net/p/dosbox/code-0/dosbox/trunk@1699
This commit is contained in:
Sjoerd van der Berg 2004-03-03 15:47:07 +00:00
parent 30e64fda9b
commit 9d26cef41c
8 changed files with 3168 additions and 251 deletions

View file

@ -1,6 +1,6 @@
AM_CPPFLAGS = -I$(top_srcdir)/include
EXTRA_DIST = fmopl.c fmopl.h
EXTRA_DIST = fmopl.c fmopl.h ymf262.h ymf262.c
noinst_LIBRARIES = libhardware.a
@ -10,3 +10,6 @@ libhardware_a_SOURCES = adlib.cpp dma.cpp gameblaster.cpp hardware.cpp iohandler
vga_memory.cpp vga_misc.cpp vga_seq.cpp font-switch.h ega-switch.h cmos.cpp disney.cpp \
gus.cpp mpu401.cpp serialport.cpp softmodem.cpp ipx.cpp ipxserver.cpp

View file

@ -29,9 +29,7 @@
Thanks to vdmsound for nice simple way to implement this
*/
namespace MAME {
/* Defines */
# define logerror(x)
# define logerror
#ifdef _MSC_VER
/* Disable recurring warnings */
@ -39,166 +37,137 @@ namespace MAME {
# pragma warning ( disable : 4244 )
#endif
/* Work around ANSI compliance problem (see driver.h) */
struct __MALLOCPTR {
void* m_ptr;
struct __MALLOCPTR {
void* m_ptr;
__MALLOCPTR(void) : m_ptr(NULL) { }
__MALLOCPTR(void* src) : m_ptr(src) { }
void* operator=(void* rhs) { return (m_ptr = rhs); }
operator int*() const { return (int*)m_ptr; }
operator int**() const { return (int**)m_ptr; }
operator char*() const { return (char*)m_ptr; }
};
/* Bring in the MAME OPL emulation */
# define HAS_YM3812 1
# include "fmopl.c"
}
struct OPLTimer_t {
bool isEnabled;
bool isMasked;
bool isOverflowed;
Bit64u count;
Bit64u base;
__MALLOCPTR(void) : m_ptr(NULL) { }
__MALLOCPTR(void* src) : m_ptr(src) { }
void* operator=(void* rhs) { return (m_ptr = rhs); }
operator int*() const { return (int*)m_ptr; }
operator int**() const { return (int**)m_ptr; }
operator char*() const { return (char*)m_ptr; }
};
static OPLTimer_t timer1,timer2;
static Bit8u regsel;
namespace OPL2 {
#define HAS_YM3812 1
#include "fmopl.c"
void TimerOver(Bitu val){
YM3812TimerOver(val>>8,val & 0xff);
}
void TimerHandler(int channel,double interval_Sec) {
PIC_AddEvent(TimerOver,1000000*interval_Sec,channel);
}
}
#undef OSD_CPU_H
#undef TL_TAB_LEN
namespace OPL3 {
#define HAS_YMF262 1
#include "ymf262.c"
void TimerOver(Bitu val){
YMF262TimerOver(val>>8,val & 0xff);
}
void TimerHandler(int channel,double interval_Sec) {
PIC_AddEvent(TimerOver,1000000*interval_Sec,channel);
}
}
#define OPL_INTERNAL_FREQ 3600000 // The OPL operates at 3.6MHz
#define OPL_NUM_CHIPS 1 // Number of OPL chips
#define OPL_CHIP0 0
#define OPL2_INTERNAL_FREQ 3600000 // The OPL2 operates at 3.6MHz
#define OPL3_INTERNAL_FREQ 14400000 // The OPL3 operates at 14.4MHz
static MIXER_Channel * adlib_chan;
static struct {
bool active;
OPL_Mode mode;
MIXER_Channel * chan;
Bit32u last_used;
Bit16s mixbuf[2][128];
} opl;
static void ADLIB_CallBack(Bit8u *stream, Bit32u len) {
static void OPL_CallBack(Bit8u *stream, Bit32u len) {
/* Check for size to update and check for 1 ms updates to the opl registers */
/* Calculate teh machine ms we are at now */
/* update 1 ms of data */
MAME::YM3812UpdateOne(0,(MAME::INT16 *)stream,len);
}
Bitu i;
switch(opl.mode) {
case OPL_opl2:
OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)stream,len);
break;
case OPL_opl3:
OPL3::YMF262UpdateOne(0,(OPL2::INT16 *)stream,len);
break;
case OPL_dualopl2:
OPL2::YM3812UpdateOne(0,(OPL2::INT16 *)opl.mixbuf[0],len);
OPL2::YM3812UpdateOne(1,(OPL2::INT16 *)opl.mixbuf[1],len);
for (i=0;i<len;i++) {
((Bit16u *)stream)[i*2+0]=opl.mixbuf[0][i];
((Bit16u *)stream)[i*2+1]=opl.mixbuf[1][i];
}
break;
static Bit8u read_p388(Bit32u port) {
Bit8u ret=0;
Bit64u micro=PIC_MicroCount();
if (timer1.isEnabled) {
if ((micro-timer1.base)>timer1.count) {
timer1.isOverflowed=true;
timer1.base=micro;
}
if (timer1.isOverflowed || !timer1.isMasked) {
ret|=0xc0;
}
}
if (timer2.isEnabled) {
if ((micro-timer2.base)>timer2.count) {
timer2.isOverflowed=true;
timer2.base=micro;
}
if (timer2.isOverflowed || !timer2.isMasked) {
ret|=0xA0;
}
}
return ret;
}
static void write_p388(Bit32u port,Bit8u val) {
regsel=val;
// The following writes this value to ultrasounds equivalent register.
// I don't know of any other way to do this
IO_Write(0x248,val);
}
static void write_p389(Bit32u port,Bit8u val) {
switch (regsel) {
case 0x02: /* Timer 1 */
timer1.count=val*80;
return;
case 0x03: /* Timer 2 */
timer2.count=val*320;
return;
case 0x04: /* IRQ clear / mask and Timer enable */
if (val&0x80) {
timer1.isOverflowed=false;
timer2.isOverflowed=false;
return;
}
if (val&0x40) timer1.isMasked=true;
else timer1.isMasked=false;
if (val&1) {
timer1.isEnabled=true;
timer1.base=PIC_MicroCount();
} else timer1.isEnabled=false;
if (val&0x20) timer2.isMasked=true;
else timer2.isMasked=false;
if (val&2) {
timer2.isEnabled=true;
timer2.base=PIC_MicroCount();
} else timer2.isEnabled=false;
return;
default: /* Normal OPL call queue it */
/* Use a little hack to directly write to the register */
MAME::OPLWriteReg(MAME::OPL_YM3812[0],regsel,val);
if ((PIC_Ticks-opl.last_used)>1000) {
MIXER_Enable(opl.chan,false);
opl.active=false;
}
}
static bool adlib_enabled;
Bit8u OPL_Read(Bit32u port) {
Bitu addr=port & 3;
switch (opl.mode) {
case OPL_opl2:
return OPL2::YM3812Read(0,addr);
case OPL_dualopl2:
return OPL2::YM3812Read(addr>>1,addr);
case OPL_opl3:
return OPL3::YMF262Read(0,addr);
}
return 0xff;
}
static void ADLIB_Enable(bool enable) {
if (enable) {
adlib_enabled=true;
MIXER_Enable(adlib_chan,true);
IO_RegisterWriteHandler(0x388,write_p388,"ADLIB Register select");
IO_RegisterWriteHandler(0x389,write_p389,"ADLIB Data Write");
IO_RegisterReadHandler(0x388,read_p388,"ADLIB Status");
IO_RegisterWriteHandler(0x220,write_p388,"ADLIB Register select");
IO_RegisterWriteHandler(0x221,write_p389,"ADLIB Data Write");
IO_RegisterReadHandler(0x220,read_p388,"ADLIB Status");
} else {
adlib_enabled=false;
MIXER_Enable(adlib_chan,false);
IO_FreeWriteHandler(0x220);
IO_FreeWriteHandler(0x221);
IO_FreeReadHandler(0x220);
IO_FreeWriteHandler(0x388);
IO_FreeWriteHandler(0x389);
IO_FreeReadHandler(0x388);
void OPL_Write(Bit32u port,Bit8u val) {
opl.last_used=PIC_Ticks;
if (!opl.active) {
opl.active=true;
MIXER_Enable(opl.chan,true);
}
Bitu addr=port & 3;
switch (opl.mode) {
case OPL_opl2:
OPL2::YM3812Write(0,addr,val);
break;
case OPL_opl3:
OPL3::YMF262Write(0,addr,val);
break;
case OPL_dualopl2:
OPL2::YM3812Write(addr>>1,addr,val);
break;
}
}
void ADLIB_Init(Section* sec) {
void OPL_Init(Section* sec,OPL_Mode oplmode,Bitu rate) {
Bitu i;
Section_prop * section=static_cast<Section_prop *>(sec);
if(!section->Get_bool("adlib")) return;
timer1.isMasked=true;
timer1.base=0;
timer1.count=0;
timer1.isEnabled=false;
timer1.isOverflowed=false;
timer2.isMasked=true;
timer2.base=0;
timer2.count=0;
timer2.isEnabled=false;
timer2.isOverflowed=false;
#define ADLIB_FREQ 22050
if (MAME::YM3812Init(OPL_NUM_CHIPS,OPL_INTERNAL_FREQ,ADLIB_FREQ)) {
E_Exit("Can't create adlib OPL Emulator");
if (OPL2::YM3812Init(2,OPL2_INTERNAL_FREQ,rate)) {
E_Exit("Can't create OPL2 Emulator");
};
OPL2::YM3812SetTimerHandler(0,OPL2::TimerHandler,0);
OPL2::YM3812SetTimerHandler(1,OPL2::TimerHandler,256);
if (OPL3::YMF262Init(1,OPL3_INTERNAL_FREQ,rate)) {
E_Exit("Can't create OPL3 Emulator");
};
OPL3::YMF262SetTimerHandler(0,OPL3::TimerHandler,0);
for (i=0;i<4;i++) {
IO_RegisterWriteHandler(0x388+i,OPL_Write,"OPL Write");
IO_RegisterReadHandler(0x388+i,OPL_Read,"OPL read");
IO_RegisterWriteHandler(0x220+i,OPL_Write,"OPL Write");
IO_RegisterReadHandler(0x220+i,OPL_Read,"OPL read");
}
opl.active=false;
opl.last_used=0;
opl.mode=oplmode;
adlib_chan=MIXER_AddChannel(ADLIB_CallBack,ADLIB_FREQ,"ADLIB");
MIXER_SetMode(adlib_chan,MIXER_16MONO);
ADLIB_Enable(true);
opl.chan=MIXER_AddChannel(OPL_CallBack,rate,"ADLIB");
MIXER_SetMode(opl.chan,(opl.mode>OPL_opl2) ? MIXER_16STEREO : MIXER_16MONO);
MIXER_Enable(opl.chan,false);
};

View file

@ -3,14 +3,23 @@
** File: fmopl.c - software implementation of FM sound generator
** types OPL and OPL2
**
** Copyright (C) 2002,2003 Jarek Burczynski (bujar at mame dot net)
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
** Copyright (C) 2002 Jarek Burczynski
**
** Version 0.60
** Version 0.70
**
Revision History:
14-06-2003 Jarek Burczynski:
- implemented all of the status register flags in Y8950 emulation
- renamed Y8950SetDeltaTMemory() parameters from _rom_ to _mem_ since
they can be either RAM or ROM
08-10-2002 Jarek Burczynski (thanks to Dox for the YM3526 chip)
- corrected YM3526Read() to always set bit 2 and bit 1
to HIGH state - identical to YM3812Read (verified on real YM3526)
04-28-2002 Jarek Burczynski:
- binary exact Envelope Generator (verified on real YM3812);
compared to YM2151: the EG clock is equal to internal_clock,
@ -51,9 +60,8 @@ Revision History:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <math.h>
//#include "driver.h" /* use M.A.M.E. */
#include "fmopl.h"
@ -117,10 +125,45 @@ Revision History:
/*#define SAVE_SAMPLE*/
#ifdef SAVE_SAMPLE
INLINE signed int acc_calc(signed int value)
{
if (value>=0)
{
if (value < 0x0200)
return (value & ~0);
if (value < 0x0400)
return (value & ~1);
if (value < 0x0800)
return (value & ~3);
if (value < 0x1000)
return (value & ~7);
if (value < 0x2000)
return (value & ~15);
if (value < 0x4000)
return (value & ~31);
return (value & ~63);
}
/*else value < 0*/
if (value > -0x0200)
return (~abs(value) & ~0);
if (value > -0x0400)
return (~abs(value) & ~1);
if (value > -0x0800)
return (~abs(value) & ~3);
if (value > -0x1000)
return (~abs(value) & ~7);
if (value > -0x2000)
return (~abs(value) & ~15);
if (value > -0x4000)
return (~abs(value) & ~31);
return (~abs(value) & ~63);
}
static FILE *sample[1];
#if 1 /*save to MONO file */
#define SAVE_ALL_CHANNELS \
{ signed int pom = lt; \
{ signed int pom = acc_calc(lt); \
fputc((unsigned short)pom&0xff,sample[0]); \
fputc(((unsigned short)pom>>8)&0xff,sample[0]); \
}
@ -155,8 +198,6 @@ static FILE *sample[1];
/* Saving is necessary for member of the 'R' mark for suspend/resume */
typedef struct{
UINT32 ar; /* attack rate: AR<<2 */
UINT32 dr; /* decay rate: DR<<2 */
@ -181,14 +222,12 @@ typedef struct{
INT32 TLL; /* adjusted now TL */
INT32 volume; /* envelope counter */
UINT32 sl; /* sustain level: sl_tab[SL] */
UINT8 eg_sh_ar; /* (attack state) */
UINT8 eg_sel_ar; /* (attack state) */
UINT8 eg_sh_dr; /* (decay state) */
UINT8 eg_sel_dr; /* (decay state) */
UINT8 eg_sh_rr; /* (release state) */
UINT8 eg_sel_rr; /* (release state) */
UINT32 key; /* 0 = KEY OFF, >0 = KEY ON */
/* LFO */
@ -244,7 +283,7 @@ typedef struct fm_opl_f {
YM_DELTAT *deltat;
/* Keyboard / I/O interface unit*/
/* Keyboard and I/O ports interface */
UINT8 portDirection;
UINT8 portLatch;
OPL_PORTHANDLER_R porthandler_r;
@ -375,7 +414,7 @@ static const unsigned char eg_inc[15*RATE_STEPS]={
/*note that there is no O(13) in this table - it's directly in the code */
static const unsigned char eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */
/* 16 dummy (infinite time) rates */
/* 16 infinite time rates */
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14),
@ -410,13 +449,13 @@ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12),
};
#undef O
//rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
//shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0
//mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */
/*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */
/*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */
#define O(a) (a*1)
static const unsigned char eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */
/* 16 dummy (infinite time) rates */
/* 16 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
@ -586,15 +625,15 @@ static const INT8 lfo_pm_table[8*8*2] = {
/* lock level of common table */
static int num_lock = 0;
/* work table */
static void *cur_chip = NULL; /* current chip point */
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
static signed int phase_modulation; /* phase modulation input (SLOT 2) */
static void *cur_chip = NULL; /* current chip pointer */
static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
static signed int phase_modulation; /* phase modulation input (SLOT 2) */
static signed int output[1];
#if BUILD_Y8950
static INT32 output_deltat[4]; /* for Y8950 DELTA-T */
static INT32 output_deltat[4]; /* for Y8950 DELTA-T, chip is mono, that 4 here is just for safety */
#endif
static UINT32 LFO_AM;
@ -699,8 +738,6 @@ INLINE void advance(FM_OPL *OPL)
switch(op->state)
{
case EG_ATT: /* attack phase */
{
if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) )
{
op->volume += (~op->volume *
@ -714,8 +751,6 @@ INLINE void advance(FM_OPL *OPL)
}
}
}
break;
case EG_DEC: /* decay phase */
@ -792,7 +827,7 @@ INLINE void advance(FM_OPL *OPL)
{
block_fnum += lfo_fn_table_index_offset;
block = (block_fnum&0x1c00) >> 10;
op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;//ok
op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul;
}
else /* LFO phase modulation = zero */
{
@ -857,15 +892,8 @@ INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm, unsigne
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm, unsigned int wave_tab)
{
UINT32 p;
INT32 i;
i = (phase & ~FREQ_MASK) + pm;
/*logerror("i=%08x (i>>16)&511=%8i phase=%i [pm=%08x] ",i, (i>>16)&511, phase>>FREQ_SH, pm);*/
p = (env<<4) + sin_tab[ wave_tab + ((i>>FREQ_SH) & SIN_MASK)];
/*logerror("(p&255=%i p>>8=%i) out= %i\n", p&255,p>>8, tl_tab[p&255]>>(p>>8) );*/
p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ];
if (p >= TL_TAB_LEN)
return 0;
@ -966,7 +994,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
if (!SLOT->CON)
phase_modulation = SLOT->op1_out[0];
//else ignore output of operator 1
/* else ignore output of operator 1 */
SLOT->op1_out[1] = 0;
if( env < ENV_QUIET )
@ -984,16 +1012,16 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
/* Phase generation is based on: */
// HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases)
// SD (16) channel 7->slot 1
// TOM (14) channel 8->slot 1
// TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases)
/* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */
/* SD (16) channel 7->slot 1 */
/* TOM (14) channel 8->slot 1 */
/* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */
/* Envelope generation based on: */
// HH channel 7->slot1
// SD channel 7->slot2
// TOM channel 8->slot1
// TOP channel 8->slot2
/* HH channel 7->slot1 */
/* SD channel 7->slot2 */
/* TOM channel 8->slot1 */
/* TOP channel 8->slot2 */
/* The following formulas can be well optimized.
@ -1048,7 +1076,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
phase = 0xd0>>2;
}
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT->wavetable) * 2;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2;
}
/* Snare Drum (verified on real YM3812) */
@ -1069,13 +1097,13 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
if (noise)
phase ^= 0x100;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT->wavetable) * 2;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2;
}
/* Tom Tom (verified on real YM3812) */
env = volume_calc(SLOT8_1);
if( env < ENV_QUIET )
output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT->wavetable) * 2;
output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2;
/* Top Cymbal (verified on real YM3812) */
env = volume_calc(SLOT8_2);
@ -1102,7 +1130,7 @@ INLINE void OPL_CALC_RH( OPL_CH *CH, unsigned int noise )
if (res2)
phase = 0x300;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT->wavetable) * 2;
output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2;
}
}
@ -1229,13 +1257,14 @@ static void OPL_initalize(FM_OPL *OPL)
int i;
/* frequency base */
#if 1
OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0;
#else
#if 0
OPL->rate = (double)OPL->clock / 72.0;
OPL->freqbase = 1.0;
#endif
/*logerror("freqbase=%f\n", OPL->freqbase);*/
/* Timer base time */
OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0 );
@ -1458,9 +1487,11 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v)
{ /* set IRQ mask ,timer enable*/
UINT8 st1 = v&1;
UINT8 st2 = (v>>1)&1;
/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
OPL_STATUS_RESET(OPL,v&0x78);
OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
OPL_STATUS_RESET(OPL, v & 0x78 );
OPL_STATUSMASK_SET(OPL, (~v) & 0x78 );
/* timer 2 */
if(OPL->st[1] != st2)
{
@ -1484,34 +1515,43 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v)
if(OPL->keyboardhandler_w)
OPL->keyboardhandler_w(OPL->keyboard_param,v);
else
logerror("OPL:write unmapped KEYBOARD port\n");
logerror("Y8950: write unmapped KEYBOARD port\n");
}
break;
case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
case 0x07: /* DELTA-T control 1 : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
break;
case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
#endif
case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
OPL->mode = v;
v&=0x1f; /* for DELTA-T unit */
#if BUILD_Y8950
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v&0x0f); /* mask 4 LSBs in register 08 for DELTA-T unit */
#endif
break;
#if BUILD_Y8950
case 0x09: /* START ADD */
case 0x0a:
case 0x0b: /* STOP ADD */
case 0x0c:
case 0x0d: /* PRESCALE */
case 0x0e:
case 0x0f: /* ADPCM data */
case 0x0f: /* ADPCM data write */
case 0x10: /* DELTA-N */
case 0x11: /* DELTA-N */
case 0x12: /* EG-CTRL */
case 0x12: /* ADPCM volume */
if(OPL->type&OPL_TYPE_ADPCM)
YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
break;
#if 0
case 0x15: /* DAC data */
case 0x16:
case 0x17: /* SHIFT */
case 0x15: /* DAC data high 8 bits (F7,F6...F2) */
case 0x16: /* DAC data low 2 bits (F1, F0 in bits 7,6) */
case 0x17: /* DAC data shift (S2,S1,S0 in bits 2,1,0) */
logerror("FMOPL.C: DAC data register written, but not implemented reg=%02x val=%02x\n",r,v);
break;
case 0x18: /* I/O CTRL (Direction) */
if(OPL->type&OPL_TYPE_IO)
OPL->portDirection = v&0x0f;
@ -1524,10 +1564,10 @@ static void OPLWriteReg(FM_OPL *OPL, int r, int v)
OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
}
break;
case 0x1a: /* PCM data */
#endif
default:
logerror("FMOPL.C: write to unknown register: %02x\n",r);
break;
#endif
#endif
}
break;
case 0x20: /* am ON, vib ON, ksr, eg_type, mul */
@ -1773,7 +1813,7 @@ static void OPLResetChip(FM_OPL *OPL)
#endif
}
/* Create one of virtual YM3812 */
/* Create one of virtual YM3812/YM3526/Y8950 */
/* 'clock' is chip clock in Hz */
/* 'rate' is sampling rate */
static FM_OPL *OPLCreate(int type, int clock, int rate)
@ -1806,7 +1846,9 @@ static FM_OPL *OPLCreate(int type, int clock, int rate)
#if BUILD_Y8950
if (type&OPL_TYPE_ADPCM)
{
OPL->deltat = (YM_DELTAT *)ptr;
}
ptr += sizeof(YM_DELTAT);
#endif
@ -1817,8 +1859,6 @@ static FM_OPL *OPLCreate(int type, int clock, int rate)
/* init global tables */
OPL_initalize(OPL);
/* reset chip */
OPLResetChip(OPL);
return OPL;
}
@ -1829,7 +1869,7 @@ static void OPLDestroy(FM_OPL *OPL)
free(OPL);
}
/* Option handlers */
/* Optional handlers */
static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
{
@ -1847,7 +1887,6 @@ static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int
OPL->UpdateParam = param;
}
/* YM3812 I/O interface */
static int OPLWrite(FM_OPL *OPL,int a,int v)
{
if( !(a&1) )
@ -1867,6 +1906,17 @@ static unsigned char OPLRead(FM_OPL *OPL,int a)
if( !(a&1) )
{
/* status port */
#if BUILD_Y8950
if(OPL->type&OPL_TYPE_ADPCM) /* Y8950 */
{
return (OPL->status & (OPL->statusmask|0x80)) | (OPL->deltat->PCM_BSY&1);
}
#endif
/* OPL and OPL2 */
return OPL->status & (OPL->statusmask|0x80);
}
@ -1880,23 +1930,36 @@ static unsigned char OPLRead(FM_OPL *OPL,int a)
if(OPL->keyboardhandler_r)
return OPL->keyboardhandler_r(OPL->keyboard_param);
else
logerror("OPL:read unmapped KEYBOARD port\n");
logerror("Y8950: read unmapped KEYBOARD port\n");
}
return 0;
#if 0
case 0x0f: /* ADPCM-DATA */
if(OPL->type&OPL_TYPE_ADPCM)
{
UINT8 val;
val = YM_DELTAT_ADPCM_Read(OPL->deltat);
/*logerror("Y8950: read ADPCM value read=%02x\n",val);*/
return val;
}
return 0;
#endif
case 0x19: /* I/O DATA */
if(OPL->type&OPL_TYPE_IO)
{
if(OPL->porthandler_r)
return OPL->porthandler_r(OPL->port_param);
else
logerror("OPL:read unmapped I/O port\n");
logerror("Y8950:read unmapped I/O port\n");
}
return 0;
case 0x1a: /* PCM-DATA */
if(OPL->type&OPL_TYPE_ADPCM)
{
logerror("Y8950 A/D convertion is accessed but not implemented !\n");
return 0x80; /* 2's complement PCM data - result from A/D convertion */
}
return 0;
}
#endif
@ -1968,6 +2031,8 @@ int YM3812Init(int num, int clock, int rate)
YM3812NumChips = 0;
return -1;
}
/* reset */
YM3812ResetChip(i);
}
return 0;
@ -2076,7 +2141,10 @@ void YM3812UpdateOne(int which, INT16 *buffer, int length)
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
@ -2114,6 +2182,8 @@ int YM3526Init(int num, int clock, int rate)
YM3526NumChips = 0;
return -1;
}
/* reset */
YM3526ResetChip(i);
}
return 0;
@ -2143,7 +2213,8 @@ int YM3526Write(int which, int a, int v)
unsigned char YM3526Read(int which, int a)
{
return OPLRead(OPL_YM3526[which], a);
/* YM3526 always returns bit2 and bit1 in HIGH state */
return OPLRead(OPL_YM3526[which], a) | 0x06 ;
}
int YM3526TimerOver(int which, int c)
{
@ -2221,7 +2292,10 @@ void YM3526UpdateOne(int which, INT16 *buffer, int length)
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
@ -2241,6 +2315,15 @@ void YM3526UpdateOne(int which, INT16 *buffer, int length)
static FM_OPL *OPL_Y8950[MAX_OPL_CHIPS]; /* array of pointers to the Y8950's */
static int Y8950NumChips = 0; /* number of chips */
static void Y8950_deltat_status_set(UINT8 which, UINT8 changebits)
{
OPL_STATUS_SET(OPL_Y8950[which], changebits);
}
static void Y8950_deltat_status_reset(UINT8 which, UINT8 changebits)
{
OPL_STATUS_RESET(OPL_Y8950[which], changebits);
}
int Y8950Init(int num, int clock, int rate)
{
int i;
@ -2260,6 +2343,13 @@ int Y8950Init(int num, int clock, int rate)
Y8950NumChips = 0;
return -1;
}
OPL_Y8950[i]->deltat->status_set_handler = Y8950_deltat_status_set;
OPL_Y8950[i]->deltat->status_reset_handler = Y8950_deltat_status_reset;
OPL_Y8950[i]->deltat->status_change_which_chip = i;
OPL_Y8950[i]->deltat->status_change_EOS_bit = 0x10; /* status flag: set bit4 on End Of Sample */
OPL_Y8950[i]->deltat->status_change_BRDY_bit = 0x08; /* status flag: set bit3 on BRDY (End Of: ADPCM analysis/synthesis, memory reading/writing) */
/* reset */
Y8950ResetChip(i);
}
return 0;
@ -2309,11 +2399,11 @@ void Y8950SetUpdateHandler(int which,OPL_UPDATEHANDLER UpdateHandler,int param)
OPLSetUpdateHandler(OPL_Y8950[which], UpdateHandler, param);
}
void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size )
void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size )
{
FM_OPL *OPL = OPL_Y8950[which];
OPL->deltat->memory = (UINT8 *)(deltat_rom);
OPL->deltat->memory_size = deltat_rom_size;
OPL->deltat->memory = (UINT8 *)(deltat_mem_ptr);
OPL->deltat->memory_size = deltat_mem_size;
}
/*
@ -2331,9 +2421,6 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length)
YM_DELTAT *DELTAT = OPL->deltat;
OPLSAMPLE *buf = buffer;
/* setup DELTA-T unit */
YM_DELTAT_DECODE_PRESET(DELTAT);
if( (void *)OPL != cur_chip ){
cur_chip = (void *)OPL;
/* rhythm slots */
@ -2353,7 +2440,7 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length)
advance_lfo(OPL);
/* deltaT ADPCM */
if( DELTAT->portstate )
if( DELTAT->portstate&0x80 )
YM_DELTAT_ADPCM_CALC(DELTAT);
/* FM part */
@ -2383,7 +2470,10 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length)
lt = limit( lt , MAXOUT, MINOUT );
#ifdef SAVE_SAMPLE
if (which==0)
{
SAVE_ALL_CHANNELS
}
#endif
/* store to sound buffer */
@ -2392,15 +2482,6 @@ void Y8950UpdateOne(int which, INT16 *buffer, int length)
advance(OPL);
}
/* deltaT START flag */
if( !DELTAT->portstate )
OPL->status &= 0xfe;
if( DELTAT->eos ) //AT: set bit 4 of OPL status register on EOS
{
DELTAT->eos = 0;
OPL->status |= 0x10;
}
}
void Y8950SetPortHandler(int which,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)

View file

@ -91,7 +91,7 @@ void YM3526SetUpdateHandler(int which, OPL_UPDATEHANDLER UpdateHandler, int para
/* Y8950 port handlers */
void Y8950SetPortHandler(int which, OPL_PORTHANDLER_W PortHandler_w, OPL_PORTHANDLER_R PortHandler_r, int param);
void Y8950SetKeyboardHandler(int which, OPL_PORTHANDLER_W KeyboardHandler_w, OPL_PORTHANDLER_R KeyboardHandler_r, int param);
void Y8950SetDeltaTMemory(int which, void * deltat_rom, int deltat_rom_size );
void Y8950SetDeltaTMemory(int which, void * deltat_mem_ptr, int deltat_mem_size );
int Y8950Init (int num, int clock, int rate);
void Y8950Shutdown (void);

View file

@ -420,10 +420,10 @@ static void write_cms(Bit32u port,Bit8u val) {
}
void CMS_Init(Section* sec) {
void CMS_Init(Section* sec,Bitu rate) {
Section_prop * section=static_cast<Section_prop *>(sec);
if(!section->Get_bool("cms")) return;
sample_rate=section->Get_int("cmsrate");
sample_rate=rate;
IO_RegisterWriteHandler(0x220,write_cms,"CMS");
IO_RegisterWriteHandler(0x221,write_cms,"CMS");
@ -432,7 +432,7 @@ void CMS_Init(Section* sec) {
/* Register the Mixer CallBack */
cms_chan=MIXER_AddChannel(CMS_CallBack,CMS_RATE,"CMS");
cms_chan=MIXER_AddChannel(CMS_CallBack,rate,"CMS");
MIXER_SetMode(cms_chan,MIXER_16STEREO);
MIXER_Enable(cms_chan,true);
last_command=PIC_Ticks;

View file

@ -25,6 +25,7 @@
#include "pic.h"
#include "hardware.h"
#include "setup.h"
#include "support.h"
#include "programs.h"
#define SB_PIC_EVENTS 0
@ -53,9 +54,9 @@
#define SB_BUF_SIZE 8096
enum {DSP_S_RESET,DSP_S_NORMAL,DSP_S_HIGHSPEED};
enum SB_TYPES {SBT_NONE=0,SBT_1=1,SBT_PRO1=2,SBT_2=3,SBT_PRO2=4,SBT_16=6};
enum SB_IRQS {SB_IRQ_8,SB_IRQ_16,SB_IRQ_MPU};
enum DSP_MODES {
MODE_NONE,MODE_DAC,
MODE_SILENCE,
@ -94,6 +95,8 @@ struct SB_INFO {
Bit8u time_constant;
bool use_time_constant;
DSP_MODES mode;
SB_TYPES type;
OPL_Mode oplmode;
struct {
bool pending_8bit;
bool pending_16bit;
@ -907,9 +910,6 @@ static Bit8u read_sb(Bit32u port) {
return 0xff;
}
return 0xff;
/* For now loop FM Stuff to 0x388 */
case 0x00: case 0x02: case 0x08:
return IO_Read(0x388);
case DSP_RESET:
return 0xff;
default:
@ -933,14 +933,6 @@ static void write_sb(Bit32u port,Bit8u val) {
case MIXER_DATA:
MIXER_Write(val);
break;
/* For now loop FM Stuff to 0x388 */
case 0x00: case 0x02: case 0x08:
IO_Write(0x388,val);
break;
case 0x01: case 0x03: case 0x09:
IO_Write(0x389,val);
break;
default:
LOG(LOG_SB,LOG_NORMAL)("Unhandled write to SB Port %4X",port);
break;
@ -964,7 +956,48 @@ static void SBLASTER_CallBack(Bit8u * stream,Bit32u len) {
void SBLASTER_Init(Section* sec) {
Bitu i;
Section_prop * section=static_cast<Section_prop *>(sec);
if(!section->Get_bool("sblaster")) return;
const char * sbtype=section->Get_string("type");
if (!strcasecmp(sbtype,"sb1")) sb.type=SBT_1;
else if (!strcasecmp(sbtype,"sb2")) sb.type=SBT_2;
else if (!strcasecmp(sbtype,"sbpro1")) sb.type=SBT_PRO1;
else if (!strcasecmp(sbtype,"sbpro2")) sb.type=SBT_PRO2;
else if (!strcasecmp(sbtype,"sb16")) sb.type=SBT_16;
else if (!strcasecmp(sbtype,"none")) sb.type=SBT_NONE;
else sb.type=SBT_16;
/* OPL/CMS Init */
const char * omode=section->Get_string("oplmode");
Bitu oplrate=section->Get_int("oplrate");
OPL_Mode opl_mode;
if (!strcasecmp(omode,"none")) opl_mode=OPL_none;
else if (!strcasecmp(omode,"cms")) opl_mode=OPL_cms;
else if (!strcasecmp(omode,"opl2")) opl_mode=OPL_opl2;
else if (!strcasecmp(omode,"dualopl2")) opl_mode=OPL_dualopl2;
else if (!strcasecmp(omode,"opl3")) opl_mode=OPL_opl3;
/* Else assume auto */
else {
switch (sb.type) {
case SBT_NONE:opl_mode=OPL_none;break;
case SBT_1:opl_mode=OPL_cms;break;
case SBT_2:opl_mode=OPL_opl2;break;
case SBT_PRO1:opl_mode=OPL_dualopl2;break;
case SBT_PRO2:
case SBT_16:
opl_mode=OPL_opl3;break;
}
}
switch (opl_mode) {
case OPL_none:
break;
case OPL_cms:
CMS_Init(section,oplrate);
break;
case OPL_opl2:
case OPL_dualopl2:
case OPL_opl3:
OPL_Init(section,opl_mode,oplrate);
break;
}
sb.chan=MIXER_AddChannel(&SBLASTER_CallBack,22050,"SBLASTER");
MIXER_Enable(sb.chan,false);
sb.dsp.state=DSP_S_NORMAL;
@ -982,6 +1015,6 @@ void SBLASTER_Init(Section* sec) {
}
PIC_RegisterIRQ(sb.hw.irq,0,"SB");
DSP_Reset();
SHELL_AddAutoexec("SET BLASTER=A%3X I%d D%d T4",sb.hw.base,sb.hw.irq,sb.hw.dma8);
SHELL_AddAutoexec("SET BLASTER=A%3X I%d D%d T%d",sb.hw.base,sb.hw.irq,sb.hw.dma8,sb.type);
}

2778
src/hardware/ymf262.c Normal file

File diff suppressed because it is too large Load diff

53
src/hardware/ymf262.h Normal file
View file

@ -0,0 +1,53 @@
#ifndef YMF262_H
#define YMF262_H
#define BUILD_YMF262 (HAS_YMF262)
/* select number of output bits: 8 or 16 */
#define OPL3_SAMPLE_BITS 16
/* compiler dependence */
#ifndef OSD_CPU_H
#define OSD_CPU_H
typedef unsigned char UINT8; /* unsigned 8bit */
typedef unsigned short UINT16; /* unsigned 16bit */
typedef unsigned int UINT32; /* unsigned 32bit */
typedef signed char INT8; /* signed 8bit */
typedef signed short INT16; /* signed 16bit */
typedef signed int INT32; /* signed 32bit */
#endif
#if (OPL3_SAMPLE_BITS==16)
typedef INT16 OPL3SAMPLE;
#endif
#if (OPL3_SAMPLE_BITS==8)
typedef INT8 OPL3SAMPLE;
#endif
typedef void (*OPL3_TIMERHANDLER)(int channel,double interval_Sec);
typedef void (*OPL3_IRQHANDLER)(int param,int irq);
typedef void (*OPL3_UPDATEHANDLER)(int param,int min_interval_us);
#if BUILD_YMF262
int YMF262Init(int num, int clock, int rate);
void YMF262Shutdown(void);
void YMF262ResetChip(int which);
int YMF262Write(int which, int a, int v);
unsigned char YMF262Read(int which, int a);
int YMF262TimerOver(int which, int c);
void YMF262UpdateOne(int which, INT16 **buffers, int length);
void YMF262SetTimerHandler(int which, OPL3_TIMERHANDLER TimerHandler, int channelOffset);
void YMF262SetIRQHandler(int which, OPL3_IRQHANDLER IRQHandler, int param);
void YMF262SetUpdateHandler(int which, OPL3_UPDATEHANDLER UpdateHandler, int param);
#endif
#endif /* YMF262_H */